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Insensitivity of Quantized Hall Conductance to
Disorder and Interactions
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A two-dimensional quantum Hall system is studied for a wide class of potentials
including single-body random potentials and repulsive electron�electron interac-
tions. We assume that there exists a nonzero excitation gap above the ground
state(s), and then the conductance is derived from the linear perturbation theory
with a sufficiently weak electric field. Under these two assumptions, we prove
that the Hall conductance _xy and the diagonal conductance _yy satisfy
|_xy+e2&�h|�const } L&1�2 and |_yy |�const } L&1�12. Here e2�h is the universal
conductance with the charge &e of the electron and the Planck constant h; & is
the filling factor of the Landau level; and L is the linear dimension of the
system. In the thermodynamic limit, our results show _xy=&e2&�h and _yy=0.
The former implies that integral and fractional filling factors & with a gap lead
to, respectively, integral and fractional quantizations of the Hall conductance.

KEY WORDS: Integral quantum Hall effect; fractional quantum Hall effect;
Hall conductance; Landau Hamiltonian; random potential; electron�electron
interaction.

1. INTRODUCTION

The quantum Hall effect2 is one of the most remarkable phenomena dis-
covered in solid state physics. The effect is observed in two-dimensional
electrons gases subjected to a uniform perpendicular magnetic field. Experi-
mentally, such systems are realized at interfaces in semiconductors. The
first experiments of the resistivity in a two-dimensional electron system in
a magnetic field were performed by Kawaji, Igarashi and Wakabayashi(4)

and Igarashi, Wakabayashi and Kawaji(5) in 1975. Unfortunately the
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quality of the samples in their early experiments3 had not reached the stage
where plateaus of finite width for the Hall resistivity could be obtained. In
the same 1975, Ando, Matsumoto and Uemura(7) also were studying a
two-dimensional electron system with disorder in a magnetic field, and
theoretically predicted some aspects of the quantum Hall effect. However,
they did not expect that the Hall resistivity of the plateaus is almost
precisely quantized.

Soon after these studies, the integral quantum Hall effect was dis-
covered, (8, 9) and the fractional quantum Hall effect was subsequently dis-
covered.(10, 11) Most aspects of the integral quantum Hall effect may be
understood with an essentially single electron description, in which elec-
tron�electron interactions play only a secondary role. Actually early
theoretical works(12, 14, 15) for explaining the integral quantum Hall effect
were done along this line. In particular, a smashing idea of a topological
invariant4 for the conductance was introduced by Thouless, Kohmoto,
Nightingale and den Nijs(14) and Kohmoto. (15) After their article, there
appeared many variants(16�20) of their argument. In particular, some of the
arguments were extended to a quantum Hall system with electron�electron
interactions.(17�20) However, the results always show an integral quantization
of the Hall conductance without ad hoc assumptions.(17) It is questionable
that the fractional quantization of the Hall conductance can be understood
with a topological invariant of the Hall conductance.

For giving an explanation of the fractional quantum Hall effect, the
difficulty comes from the fact that the electron�electron interaction is essen-
tial to this phenomenon. In order to overcome the difficulty, it is necessary
to clarify the nature of the ground state(s) and of the low energy excita-
tions for a strongly interacting electrons gas in a uniform magnetic field.
For such a system, there appeared many approximate theories, trial func-
tions for the ground state(s), perturbative approaches, mean field approxi-
mations, numerical analysis, etc.(21) However, the quantum Hall effect, in
particular, the fractional quantization of the Hall conductance plateaus, is
still not explained theoretically with a model of an interacting electrons gas
in a uniform magnetic field.

In this paper, we consider a two-dimensional electrons gas in a
uniform magnetic field with disorder and electron�electron interactions.
The model is defined on an Lx_Ly rectangular box with periodic bound-
ary conditions. The explicit form of the Hamiltonian is given by (2.1) in
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Section 2. We assume the existence of a non-zero excitation gap above the
ground state(s). The existence of a gap is believed to be essential to the
fractional quantization of the Hall conductance. Further we assume that an
applied electric field to induce a Hall current is sufficiently weak so that the
conductance is derived as the linear response coefficients from the linear
perturbation theory. Under these two assumptions, we proved that the Hall
conductance _xy and the diagonal conductance _yy satisfy

}_xy+
e2

h
& }�const } L5�24

x L&7�24
y

(1.1)
|_yy |�const } L5�24

x L&7�24
y

Here & is the filling factor of the Landau level, and e2�h is the universal
conductance with the charge &e of electron and the Planck constant h. In
particular,

}_xy+
e2

h
& }�const } L&1�12

(1.2)
|_yy |�const } L&1�12 for Lx=Ly=L

Clearly we have

_xy=&
e2

h
&, _yy=0 (1.3)

in the thermodynamic limit L � +�. In the next Section 2, the precise
statements of these results and the precise definitions of the conductance
_xy , _yy and of the filling factor & will be given in a mathematically rigorous
manner, and we will see that our results are justified for a wide class of
potentials which includes single-body potentials with disorder and repulsive
electron�electron interactions decaying by a power law. But the class does
not include the standard Coulomb interaction proportional to 1�r, where r
is the distance between two electrons.

A reader may think that the finite-size corrections in the upper bounds
of (1.2) are too large in comparison to the precision of the experimentally
measured conductance. Actually the true finite-size corrections are expected
to be exponentially small as in ref. 22. But it is very hard to prove the
corresponding statement in a mathematically rigorous manner.

Having the result (1.1) in mind, let us discuss which filling factor &
leads to a spectral gap above the ground state(s). For this purpose, we
briefly state a result of our separate paper.(23) In the paper, we treated a
two-dimensional quantum Hall system with electron�electron interactions
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and without disorder. The model is defined on an infinitely long strip with
a large width, and the Hilbert space is restricted to the lowest (nmax+1)
Landau levels with a large integer nmax . The explicit form of the
Hamiltonian is given in Section 2. In the infinite volume, we assumed the
absence of non-translationally invariant infinite-volume ground state. Then
we obtained the following result:(23)

v If a pure infinite-volume ground state has a non-zero excitation gap,
then the filling factor & must be equal to a rational number.5

Although we have considered the system without disorder, we can
expect that, for the presence of weak disorder, the gap persists against the
disorder. In this situation with the weak disorder, we get a rational quan-
tization of the Hall conductance

_xy=&
e2

h
& with a rational filling & (1.4)

and the vanishing diagonal conductance

_yy=0 (1.5)

from the result (1.1). Further, in order to discuss the appearance of the
Hall conductance plateaus, we change the filling factor & slightly from the
above rational value. Then, if the electrons of low energy excitations do not
contribute to the current flow owing to the disorder, we can expect that the
rationally quantized value of the Hall conductance _xy remains constant,
i.e., there appears a plateau of the Hall conductance, with the vanishing
diagonal conductance. The appearance of such a plateau will be discussed
in relation to localization of wavefunctions in another separate paper.(24)

This paper is organized as follows: In Section 2, we give the precise
definition of the model and describe our main theorems in a mathemati-
cally rigorous manner. As preliminaries for the proofs of our theorems, we
briefly review the eigenvalue problem of the single-electron Landau
Hamiltonian and treat the Landau Hamiltonian with an electric field in
Section 3. In Section 4, we discuss the relation between the electric poten-
tial of the present paper and the standard time-dependent vector potential.
In Section 5, we calculate the current density by using the Rayleigh�
Schro� dinger perturbation theories with a sufficiently weak electric field, and
give the proofs of our main theorems. For the convenience of readers,
Appendices A�H are devoted to technical estimates and calculations of
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matrix elements appeared in our representation of the conductivities
(conductance).

2. THE MODEL AND THE MAIN RESULTS

We study a two-dimensional interacting N electrons system with a dis-
order potential V| in a uniform magnetic field (0, 0, B) perpendicular to
the x& y plane in which the electrons are confined, and in an electric field
(0, F, 0) oriented along the y axis. For simplicity we assume that the elec-
trons do not have spin degrees of freedom, although we can treat a quan-
tum Hall system with spin degrees of freedom or with multiple layers in the
same way. The Hamiltonian we consider in this paper is given by

H (N )
| = :

N

j=1
_ 1

2me
( px, j&eByj+A0)2+

1
2me

p2
y, j+V|(rj )&

+ :
1�i< j�N

U (2)(xi&xj , y i& yj )+ :
N

j=1

eFyjPbulk, j (2.1)

where &e and me are, respectively, the charge of electron and the mass of
electron, and A0 is a real gauge parameter; rj=(xj , yj ) is the j th Cartesian
coordinate of the N electrons. As usual, we define

px, j=&i�
�

�xj
, and py, j=&i�

�
�yj

(2.2)

with the Planck constant �. The system is defined on a rectangular box

S :=[&Lx�2, Lx�2]_[&Ly �2, Ly �2] (2.3)

with periodic boundary conditions. We have introduced a projection
operator Pbulk, j so that the electrons near boundaries y=\Ly�2 do not
feel the infinitely strong electric fields at the boundaries. Since the projec-
tion (1&Pbulk, j ) acts on a wavefunction at only a neighborhood of the
boundaries, we can expect that the effect of the projection is negligible6 in
the thermodynamic limit Ly � +�. In Section 3.2, we will give the precise
definition of Pbulk, j , and show that the corresponding electric field is con-
stant except for the neighborhood of the boundaries. In Section 4, we will
discuss the relation between the regularized electric potential and the
standard time-dependent vector potential. The latter yields the constant
electric field on the whole torus.
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We assume that the single-body potential V| with disorder satisfies
the following conditions: periodic boundary conditions

V|(x+Lx , y)=V|(x, y+Ly)=V|(x, y) (2.4)

and

&V| &<V0<� (2.5)

where V0 is a positive constant which is independent of the linear dimen-
sions Lx , Ly of the system. The potential V| consists of a random part V ran

|

and a regular part W as

V|(x, y)=V ran
| (x, y)+W(x) (2.6)

The regular part W is a function of x only such that W satisfies

W(x+Lx)=W(x)=W(&x) (2.7)

A simple example of W is given by7

W(x)=W0 cos }x with }=
2?
Lx

n, n # Z (2.8)

where W0 is a real constant.
The electron�electron interaction U (2) satisfies

U (2)(&x, &y)=U (2)(x, y) (2.9)

We impose periodic boundary conditions as

U (2)(x+Lx , y)=U (2)(x, y+Ly)=U (2)(x, y) (2.10)

We assume that U (2) is two times continuously differentiable on R2, and
satisfies

} �2

�x2 U (2)(x, y) }+ } �2

�y2 U (2)(x, y) }
�:U (2)(x, y) for any (x, y) # R2 (2.11)
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with a positive constant : which is independent of the linear dimensions
Lx , Ly of the system. Further we assume that

U (2)(x, y)�U0[1+[dist(x, y)�r0]2]&#�2

with U0>0, #>2, r0>0 (2.12)

where the distance is given by

dist(x, y) :=- min
m # Z

[ |x&mLx | 2]+min
n # Z

[ | y&nLy | 2] (2.13)

A simple example of U (2) satisfying these conditions is

U (2)(x, y)=
U0

[1+(r�r0)2]#�2 with #>2 (2.14)

where U0 and r0 are positive constants, and

r=�\Lx

? +
2

sin2 ?
Lx

x+\Ly

? +
2

sin2 ?
Ly

y (2.15)

In the limit Lx , Ly � �, we have the usual Euclidean distance r=
- x2+ y2.

We take LxLy=2?Ml2
B with a sufficiently large positive integer M.

Here lB is the so-called magnetic length defined as lB :=- ��eB. The num-
ber M is equal to the number of the states in a single Landau level of the
single-electron Hamiltonian in the uniform magnetic field with no single-
body potential, and with no electric field. For simplicity, we take M even.
We define the filling factor & as &=N�M. We assume &<&0 , where &0 is a
positive constant which is independent of Lx , Ly , N. The condition LxLy

=2?Ml2
B for Lx , Ly is convenient for imposing the following periodic

boundary conditions: For an N electrons wavefunction 8(N ), we impose
periodic boundary conditions

t (x)
j (Lx) 8(N )(r1 , r2 ,..., rN)=8 (N )(r1 , r2 ,..., rN) for j=1, 2,..., N

(2.16)

and

t ( y)
j (Ly) 8(N )(r1 , r2 ,..., rN)=8 (N )(r1 , r2 ,..., rN) for j=1, 2,..., N

(2.17)
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Here t(x)( } } } ) and t ( y)( } } } ) are magnetic translation operators(25) defined
as

t(x)(x$) f (x, y)=f (x&x$, y)
(2.18)

t( y)( y$) f (x, y)=exp[iy$x�l2
B] f (x, y& y$)

for a function f on R2, and a subscript j of an operator indicates that the
operator acts on the j th coordinate of a function.8 The range of x$ and y$
are given by (see Section 3.1)

x$=m2x with m # Z, and y$=n2y with n # Z (2.19)

where the minimal units of the translations are given by

2x :=
h

eB
1

Ly
, and 2y :=

h
eB

1
Lx

(2.20)

For a given random potential V| , we define a set of random potentials as

0(|) :=0T(|) _ 0R(|) (2.21)

with

0T(|) :={|$ } V|$(x, y)=V|(x, y& y0), y0=
2?�n
eBLx

, n # Z= (2.22)

and

0R(|)={|$ } V|$(x, y)=V|(&x, y0& y), y0=
2?�n
eBLx

, n # Z= (2.23)

Further we define an average with respect to the random potentials 0(|)
as

E|[ } } } ] :=
1

|0(|)|
:

|$ # 0(|)

( } } } ) (2.24)

The regular part W of the single-body potential V| of (2.6) is invariant
under the transformations in (2.22) and (2.23).

We denote by H (N )
|, 0 the Hamiltonian H (N )

| of (2.1) with A0=0 and
F=0. We assume that the ``ground state'' of H (N )

|, 0 is finitely q-fold
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degenerate in the sense that the lowest-lying q energy eigenvalues E (N )
|, (0, +) ,

+=1, 2,..., q satisfies the condition

2E := max
+, +$ # [1, 2,..., q]

[ |E (N )
|, (0, +)&E (N )

|, (0, +$) |] � 0

as {Lx , Ly � �
Ly � � for a fixed Lx = (2.25)

where the limit is taken for a fixed filling &=N�M. Further we assume that
there exists a non-zero excitation gap above the ``ground state,'' i.e., the
first excited state has an energy eigenvalue E (N )

|, 1 such that

min
+ # [1, 2,..., q]

[E (N )
|, 1&E (N )

|, (0, +)]�2E (2.26)

where 2E is a positive constant which is independent of Lx , Ly , N.
We denote by 8� (N )

|, (0, +) with +=1, 2,..., q, the ``ground state'' eigen-
vectors of the Hamiltonian9 H (N )

| of (2.1) with a sufficiently weak electric
field F. We take [8 (N )

|, (0, +)] to be an orthonormal system. Then the current
density j at zero temperature is given by

js :=&
e2

LxLy

1
q

:
q

+=1

E|[(8� (N )
|, (0, +) , vtot, s8� (N )

|, (0, +))] for s=x, y (2.27)

where ( ...,...) stands for the inner product in the N electrons Hilbert space,
and the velocity operator vtot for the N electrons is given by

vtot, s :={
1

me
:
N

j=1

( px, j&eByj+A0)

1
me

:
N

j=1

py, j

for s=x

for s= y
(2.28)

The formula (2.27) for the current density j is justified for an inverse tem-
perature ; satisfying 2E<<;&1<<2E. The conductivities are defined as

_sy :=lim
F a 0

js

F
for s=x, y (2.29)

Now we describe our main theorems for both non-interacting and
interacting electrons gases.
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Theorem 2.1. Suppose that there is no electron�electron inter-
action, i.e., U (2)=0, and that there is a non-zero excitation gap above the
``ground state'' in the sense of (2.26). Then

}_xy+
e2

h
& }�Ccon, 0 \ lB

Ly+
3�5

, |_yy |�Ccon, 0 \ lB

Ly+
3�5

(2.30)

where Ccon, 0 is a positive constant which is independent of the linear
dimensions Lx , Ly of the system and of the number N of the electrons.

We remark that the above assumption on the excitation gap is valid
in the case with &V|&<V0<�|c �2 and & # [1, 2,...]. Here |c is the
cyclotron frequency given by |c :=eB�me . In fact the ground state is
unique and has a non-zero excitation gap above it. In the thermodynamic
limit Ly � �, we have the integral quantization of the Hall conductance
_xy=&e2(n+1)�h with the Landau level index n=0, 1, 2,..., and the
vanishing diagonal conductance _yy=0.

For the interacting electrons gas, we obtain the following theorem:

Theorem 2.2. Suppose that the single-body potential V| is two
times continuously differentiable on R2 and satisfies

" �2

�x2 V|"+" �2

�y2 V|"<V$0<� (2.31)

with a positive constant V$0 which is independent of the linear dimensions
Lx , Ly of the system, and suppose that there is a non-zero excitation gap
above the ``ground state'' in the sense of (2.26). Then there exists a positive
number Nmin such that Nmin is independent of the linear dimensions Lx , Ly

of the system and of the number N of the electrons, and that the following
two bounds are valid for N�Nmin :

}_xy+
e2

h
& }�Ccon \Lx

lB +
5�24

\ lB

Ly +
7�24

(2.32)

|_yy |�Ccon \Lx

lB +
5�24

\ lB

Ly +
7�24

where Ccon is a positive constant which is independent of the linear dimen-
sions Lx , Ly of the system and of the number N of the electrons. In
particular,
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}_xy+
e2

h
& }�Ccon \lB

L +
1�12

(2.33)

|_yy |�Ccon \lB

L +
1�12

for Lx=Ly=L

The number Nmin is explicitly given as a function of the parameters of
the model in (F.16) in Appendix F.2.

Having this result in mind, let us discuss which filling factor & leads to
a spectral gap above the ``ground state.'' For this purpose, we briefly state
a result of our separate paper.(23) Consider first the Hamiltonian

H (N ) := :
N

j=1
{ 1

2me
[( px, j&eByj )

2+ p2
y, j]+W(xj )=

+ :
1�i< j�N

U (2)(x i&xj , yi& yj ) (2.34)

which is the Hamiltonian (2.1) without the random potential V ran
| and with

A0=0 and F=0. Then we restrict the Hilbert space to the lowest
(nmax+1) Landau level with a large integer nmax . Namely the Hamiltonian
we treated in ref. 23 is given by

H (N )(nmax) :=P (N )(nmax) H (N )P(N )(nmax) (2.35)

with the projection operator P(N )(nmax). We take the thermodynamic limit
Ly � +� for a fixed large Lx and a fixed filling factor &. In this infinite-
volume limit, we assume the absence of non-translationally invariant
infinite-volume ground state. Then we obtained the following result:(23)

v If a pure infinite-volume ground state has a non-zero excitation gap,
then the filling factor & must be equal to a rational number.10

Although the system we treated has no disorder, we can expect that,
for the presence of weak disorder, the gap persists against the disorder. In
this situation with the weak disorder, we get a rational quantization of the
Hall conductance

_xy=&
e2

h
& with a rational filling & (2.36)
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and the vanishing diagonal conductance

_yy=0 (2.37)

from the result (2.32).
In order to discuss the appearance of plateaus, we change the filling

factor & slightly from a rational value in the non-interacting or the interact-
ing cases. Then, if the electrons of low energy excitations do not contribute
to the current flow owing to the disorder, we can expect that the quantized
value of the Hall conductance _xy remains constant, i.e., there appears a
plateau of the Hall conductance, with the vanishing diagonal conductance.
The appearance of such a plateau due to disorder will be discussed in rela-
tion to localization of wavefunctions in another separate paper.(24)

3. SINGLE ELECTRON LANDAU SYSTEMS

As preliminaries, we briefly review the properties of the single electron
systems in a uniform magnetic field with no electric field, and then intro-
duce an electric field.

3.1. The Single Electron Landau Hamiltonian

In this subsection, we briefly review the eigenvalue problem of the
Landau Hamiltonian for a single electron in a uniform magnetic field. The
Hamiltonian is given by

H=
1

2me
[( px&eBy)2+ p2

y] (3.1)

Consider first the eigenvalue problem on the infinite plane R2. In order
to obtain eigenvector of the Hamiltonian H, put its form as

,(x, y)=eikxv( y) (3.2)

with a wavenumber k # R. Substituting this into the Schro� dinger equation
H,=E,, one has

_ 1
2me

(�k&eBy)2+
1

2me
p2

y & v( y)=Ev( y) (3.3)
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Clearly this is identical to the eigenvalue equation of a quantum harmonic
oscillator as

_&
�2

2me

�2

�y2+
e2B2

2me \y&
�k
eB+

2

& v( y)=Ev( y) (3.4)

The eigenvectors are

vn, k( y) :=vn( y& yk)

:=Nn exp[&( y& yk)2�(2l2
B)] Hn[( y& yk)�lB] (3.5)

where Hn is the Hermite polynomial, yk=�k�eB, and Nn is the positive
normalization constant so that

|
+�

&�
dy |vn, k( y)|2=1 (3.6)

The energy eigenvalues are given by

En, k :=(n+ 1
2) �|c for n=0, 1, 2,... (3.7)

with |c=eB�me . Thus the eigenvectors of the Hamiltonian (3.1) are given
by

,n, k(x, y)=e ikxvn, k( y) (3.8)

Next we consider single electron in Lx_Ly rectangular box S=
[&Lx �2, Lx �2]_[&Ly�2, Ly�2] satisfying Lx Ly=2?Ml2

B with a suffi-
ciently large positive integer M. For simplicity we take M even. We impose
periodic boundary conditions

,(x, y)=t(x)(Lx) ,(x, y), ,(x, y)=t ( y)(Ly) ,(x, y) (3.9)

for wavefunctions , on R2. Here t(x)( } } } ) and t( y)( } } } ) are the magnetic
translation operators defined by (2.18). We claim that the functions

f1(x, y)=t(x)(x$) f (x, y) (3.10)

and

f2(x, y)=t( y)( y$) f (x, y) (3.11)
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satisfy the periodic boundary conditions (3.9) if f satisfies (3.9). As a result,
x$ and y$ are restricted into the following values:

x$=m 2x with m # Z, and y$=n 2y with n # Z (3.12)

where

2x :=
h

eB
1

Ly
, and 2y :=

h
eB

1
Lx

(3.13)

In fact one has

f1(x, y)= f (x&x$, y)

=exp[iLy(x&x$)�l2
B] f (x&x$, y&Ly)

=exp[&iLyx$�l2
B] exp[iLyx�l2

B] f (x&x$, y&Ly)

=exp[&iLyx$�l2
B] exp[iLyx�l2

B] f1(x, y&Ly)

=exp[&iLyx$�l2
B] t( y)(Ly) f1(x, y)

=exp[&iLyx$�l2
B] f1(x, y) (3.14)

by the definitions. This implies Lyx$�l2
B=2?m with an integer m. Similarly

f2(x, y)=exp[iy$x�l2
B] f (x, y& y$)

=exp[iy$x�l2
B] f (x&Lx , y& y$)

=exp[iy$Lx �l2
B] exp[iy$(x&Lx)�l2

B] f (x&Lx , y& y$)

=exp[iy$Lx �l2
B] f2(x&Lx , y)

=exp[iy$Lx �l2
B] t (x)(Lx) f2(x, y)

=exp[iy$Lx �l2
B] f2(x, y) (3.15)

Thus y$Lx �l2
B=2?n with an integer n. In the following we restrict the

ranges of the variables x$, y$ in the magnetic translations to these values.
Since

t( y)( y$)( px&eBy)[t( y)( y$)]&1= px&eBy (3.16)

for any y$, the Hamiltonian (3.1) is invariant under all the magnetic trans-
lations t (x)( } } } ) and t ( y)( } } } ). Consider wavefunctions

,P
n, k(x, y)=L&1�2

x :
+�

l=&�

ei(k+lK ) xvn, k( y&lLy) (3.17)
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for k=2?m�Lx with m=&M�2+1,..., M�2&1, M�2, and with K=Ly �l2
B .

These wavefunctions are the eigenvectors of the Hamiltonian (3.1) satisfy-
ing the periodic boundary conditions (3.9), because Lx Ly=2?Ml2

B with
the integer M. The eigenvalues of ,P

n, k are given by (3.7).
We define a reflection operator R as

Rf (x, y)= f (&x, &y) (3.18)

for a function on R2. One can easily get the following lemma:

Lemma 3.1. The vector ,P
n, k of (3.17) is an eigenvector of the

magnetic translation t(x)(2x), i.e.,

t(x)(2x) ,P
n, k =e&ik2x,P

n, k

=e&i2?m�M,P
n, k with k=

2?m
Lx

(3.19)

and the magnetic translation t( y)(2y) shifts the wavenumber k of the vector
,P

n, k by one unit 2?�Lx as

t( y)(2y) ,P
n, k=,P

n, k$ with k$=k+
2y
l2

B

=k+
2?
Lx

(3.20)

Further,

R,P
n, k=(&1)n ,P

n, &k (3.21)

As usual we denote by L2(S) the set of functions f on the rectangular
box S such that

|
S

dx dy | f (x, y)|2=|
Lx �2

&Lx �2
dx |

Ly�2

&Ly�2
dy | f (x, y)|2<� (3.22)

Further we define the associate inner product ( f, g) as

( f, g)=|
S

dx dy[ f (x, y)]* g(x, y) (3.23)

for f, g # L2(S).
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Lemma 3.2. Let f, g be functions on R2 such that f, g # L2(S), and
that f, g satisfy the boundary conditions (3.9). Then

( f, g)=|
Lx �2

&Lx �2
dx |

Ly�2+ y0

&Ly�2+ y0

dy[ f (x, y)]* g(x, y) (3.24)

for any y0 # R.

Proof. By the periodic boundary condition f (x, y)=t(x)(Lx) f (x, y),
the function f can be expanded in Fourier series as

f (x, y)=L&1�2
x :

k

eikxf� (k, y) (3.25)

Further, since

f (x, y)=t( y)(Ly) f (x, y)

=L&1�2
x :

k

ei(k+K ) xf� (k, y&Ly)

=L&1�2
x :

k

eikxf� (k&K, y&Ly) (3.26)

one has

f� (k, y)= f� (k&K, y&Ly) (3.27)

Using this relation repeatedly, the function f of (3.25) can be rewritten as

f (x, y)= :
[k=2?n�Lx | &M�2+1�n�M�2]

L&1�2
x

_ :
+�

l=&�

e i(k+lK ) xf� (k, y&lLy) (3.28)

By the help of this expression, one has

( f, g)=|
Lx �2

&Lx �2
dx |

Ly�2

&Ly�2
dy[ f (x, y)]* g(x, y)

= :
[k=2?n�Lx | &M�2+1�n�M�2]

:
+�

l=&�
|

Ly�2

&Ly�2
dy[ f� (k, y&lLy)]*

_ĝ(k, y&lLy)
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= :
[k=2?n�Lx | &M�2+1�n�M�2]

|
+�

&�
dy[ f� (k, y)]* ĝ(k, y)

= :
[k=2?n�Lx | &M�2+1�n�M�2]

:
+�

l=&�
|

Ly�2+ y0

&Ly�2+ y0

dy[ f� (k, y&lLy)]*

_ĝ(k, y&lLy)

=|
Lx�2

&Lx�2
dx |

Ly�2+ y0

&Ly�2+ y0

dy[ f (x, y)]* g(x, y) K (3.29)

Let us see that the set of the eigenvectors [,P
n, k] of (3.17) forms an

orthonormal complete system. From (3.29) in Lemma 3.2, one has

(,P
n$, k$ , ,P

n, k)=|
+�

&�
dy v*n$, k( y) vn, k( y) $k, k$=$n, n$$k, k$ (3.30)

Here $k, k$ is the Kronecker delta. To show the completeness, consider a
function f satisfying the boundary conditions (3.9). In the same way,

(,P
n, k , f )=|

+�

&�
dy v*n, k( y) f� (k, y) (3.31)

This implies that the function f must be zero if the inner product (,P
n, k , f )

is vanishing for all the vectors ,P
n, k .

3.2. The Landau Hamiltonian in an Electric Field

Next we consider a single electron in magnetic and electric fields in the
rectangular box S=[&Lx �2, Lx �2]_[&Ly �2, Ly �2]. The Hamiltonian is
given by

H=
1

2me
[p+eA(r)]2+eFyPbulk&

me

2 \F
B+

2

(3.32)

We take the vector potential as

eA(r)=(&eBy+A0 , 0, 0) (3.33)

which gives the constant magnetic field B=(0, 0, B) perpendicular to the
x�y plane. We also applied the constant electric field F=(0, F, 0) oriented
along the y axis. We have introduced the projection operator Pbulk so that
the electrons near the boundaries y=\Ly �2 do not feel the infinitely
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strong electric field at the boundaries. The precise definition of Pbulk is
given as follows: We define a projection operator P(k) onto the Fourier
component with a wavenumber k for a function f # L2(S) as

P(k) f (x, y)=L&1�2
x eikxf� (k, y) (3.34)

with the Fourier coefficient

f� (k, y)=L&1�2
x |

Lx �2

&Lx�2
dx e&ikxf (x, y) (3.35)

For an interval I we define a projection operator as

P(I ) := :
k # F(I)

P(k) (3.36)

with

F(I) :={k=
2?n
Lx } n # Z and

�k
eB

# I= (3.37)

We define Pbulk as

Pbulk :=P(Ibulk) (3.38)

with the interval

Ibulk := .
+�

n=&�

[&Ly �2+$+nLy , Ly �2&$+nLy] (3.39)

with a positive number $. We choose $ satisfying $�Ly � 0 as Ly � +� so
that the effect of the projection (1&Pbulk) at the boundaries is negligible11

in the thermodynamic limit Ly � +�. Here we stress that the operator
eFyPbulk in the Hamiltonian H of (3.32) is self-adjoint because y and Pbulk

commute with each other from their definitions.
Next let us show the locality of (1&Pbulk). Namely the operator is

vanishing on the bulk region which is at a distance from the boundaries.
Therefore the electric field is constant on the bulk region.

Let 8(N ) be an N electrons wavefunction satisfying

1
N

(8(N ), H (N )
|, 08(N )) <E� <� (3.40)
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where the positive constant E� is independent of the linear dimensions Lx ,
Ly and of the number N of electrons, and H (N )

|, 0 is the Hamiltonian H (N )
|

of (2.1) with A0=0 and F=0. Then we have the following bound:

|(8(N ), /bulk( yj )(1&Pbulk, j ) 8(N )) |�
2(E� +&V| &)

�|c \lB

$ +
2

(3.41)

where /bulk is a characteristic function given by

/bulk( y) :={1, for y # [&Ly �2+2$, Ly �2&2$]
0, otherwise

(3.42)

Since we can choose $ � � as Ly � �, this bound clearly implies the
locality of (1&Pbulk, j ). Let us prove the bound. Note that

(eB$)2 /bulk( y j )(1&Pbulk, j )�/bulk( yj )(1&Pbulk, j )( px, j&eBy j )
2 (3.43)

from the definitions. Using this inequality and the assumption (3.40), we
have

(eB$)2 (8(N ), /bulk( yj )(1&Pbulk, j ) 8(N ))

�(8(N ), /bulk( y j )(1&Pbulk, j )( px, j&eByj )
2 8(N ))

�(8(N ), ( px, j&eByj )
2 8(N ))

�2me \ 1
N

(8(N ), H (N )
|, 0 8(N ))+&V| &+�2me(E� +&V|&) (3.44)

where we have used the positivity of the electron�electron interaction U (2)

for getting the third inequality. This is nothing but the desired bound
(3.41).

For the convenience of the following calculations, we choose A0=
meF�B. Then the Hamiltonian H of (3.32) becomes

H=
1

2me
[( px&eBy+A0)2+ p2

y]+eFyPbulk&
me

2 \F
B+

2

=
1

2me
[( px&eBy)2+ p2

y]+
1

2me
[2A0( px&eBy)+A2

0]

+eFyPbulk&
me

2 \F
B+

2

=
1

2me
[( px&eBy)2+ p2

y]+
F
B

pxPbulk+
F
B

( px&eBy)(1&Pbulk) (3.45)
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and the velocity operator vx is given by

mevx= px&eBy+
meF

B
(3.46)

In the following we will treat the second and the third terms in the last line
of (3.45) as a perturbation.

4. THE RELATION BETWEEN THE PRESENT
``ELECTRIC POTENTIAL'' AND THE STANDARD
TIME-DEPENDENT VECTOR POTENTIAL

In the same setting as in Section 2, we introduce the standard time-
dependent vector potential A(t) instead of the regularized electric potential
so that the vector potential yields the constant electric field on the whole
torus. Since the electric potential gives the constant electric field except for
the neighborhood of the boundaries as we have seen in Section 3.2, we can
expect that these two different potentials yield the same transport proper-
ties in the large volume limit. In this section, we shall discuss this issue.

The time-dependent Schro� dinger equation with the vector potential is
given by

i�
�
�t

8(N )(t)=H (N )
| (t) 8(N )(t) (4.1)

with the time-dependent Hamiltonian

H (N )
| (t)= :

N

j=1

1
2me

[( px, j&eBy j )
2+[ py, j+eA(t)]2]+U� (N )

| (r1 ,..., rN)

(4.2)

with the vector potential A(t)=(0, A(t), 0) with

A(t)=&Fte't for &�<t�0 (4.3)

and with the potentials

U� (N )
| (r1 ,..., rN)= :

N

j=1

V|(rj )+ :
i< j

U (2)(r i&rj ) (4.4)

Here ' is a small positive parameter switching the corresponding electric
field adiabatically.
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In order to show the equivalence between the two systems, we intro-
duce a unitary transformation 8(N )(t)=G(N )(t) 9 (N )(t) with

G(N )(t)=exp _&
i
�

:
N

j=1

eyj Pbulk, j /~ bulk( yj ) A(t)& (4.5)

where we have introduced the function /~ bulk so that the wavefunctions
satisfy the periodic boundary conditions. We take the function /~ bulk to be
an infinitely differentiable function satisfying

/~ bulk( y)={1, for y # [&Ly �2+2$�3, Ly �2&2$�3]
0, for y # [&Ly �2, &Ly �2+$�3] _ [Ly�2&$�3, Ly �2]

(4.6)

Namely it is equal to the identity on the bulk region and vanishing near
the boundaries. The effect of /~ bulk to the conductance is negligible for the
large volume12 by the locality of Pbulk .

Note that

i�
�
�t

8(N )(t)=G(N )(t) i�
�
�t

9(t)+_i�
�
�t

G(N )(t)& 9 (N )(t) (4.7)

and

[G(N )(t)]* i�
�
�t

G(N )(t)=& :
N

j=1

eyj F(1+'t) e'tPbulk, j /~ bulk( y j ) (4.8)

Since ' is an infinitesimally small parameter, the right-hand side leads to
the regularized electric potential of the present paper. We also have

[G(N )(t)]* [ py, j+eA(t)] G(N )(t)

=py, j+eA(t)[1&Pbulk, j /~ bulk( yj )]&eA(t) yj Pbulk, j
�

�yj
/~ bulk( yj )

(4.9)

The second and third terms in the right-hand side are vanishing in the large
volume limit for getting the conductance. This statement can be proved in
the same way as in the present paper. From these observations, we obtain

i�
�
�t

9 (N )(t)=[H (N )
| +2U� (N )

| (r1 ,..., rN ; t)] 9 (N )(t) (4.10)
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with the Hamiltonian H (N )
| of (2.1) and

2U� (N )
| (r1 ,..., rN ; t)

=[G(N )(t)]* U� (N )
| (r1 ,..., rN) G(N )(t)&U� (N )

| (r1 ,..., rN) (4.11)

Here we have dropped some terms which do not contribute to the conduc-
tance in the large volume limit. If we can drop the potential 2U� (N )

| (r1 ,...,
rN ; t), then we get the desired result, i.e., the unitary equivalence between
the two systems with the different potentials in the large volume limit.
Unfortunately we can not drop the potential. But we can expect that the
contribution to conductance is of order of $�Ly which is vanishing in the
limit Ly � �.

Let us estimate the correction from 2U� (N )
| (r1 ,..., rN ; t) to the conduc-

tance. Note that the unitary operator G(N )(t) can be rewritten as

G(N )(t)=exp _&
i
�

:
N

j=1

eyj A(t) /~ bulk( y)& G (N )
edge(t) (4.12)

with

G (N )
edge(t)=exp _ i

�
:
N

j=1

eyj A(t)(1&Pbulk, j ) /~ bulk( y j )& (4.13)

Using this, we have

[G(N )(t)]* U� (N )
| (r,..., rN) G(N )(t)

=[G (N )
edge(t)]* U� (N )

| (r1 ,..., rN) G (N )
edge(t) (4.14)

Immediately, we get

2U� (N )
| (r1 ,..., rN ; t)

=[G(N )
edge(t)]* U� (N )

| (r,..., rN) G(N )
edge(t)&U� (N )

| (r,..., rN) (4.15)

This implies, owing to the definition of G (N )
edge(t) and the locality of Pbulk ,

that, if the potential U� (N )
| (r1 ,..., rN) is vanishing near the boundaries, then

2U� (N )
| (r1 ,..., rN ; t) is almost vanishing on the whole torus. In fact, if we

take the potential

U� (N )
| (r1 ,..., rN)= :

N

j=1

Pbulk, j V|(rj ) Pbulk, j

+ :
i< j

Pbulk, iPbulk, j U (2)(ri&rj ) Pbulk, iPbulk, j (4.16)

404 Koma



instead of (4.4), then the potential difference 2U� (N )
| (r1 ,..., rN ; t) is exactly

equal to zero. Thus 2U� (N )
| (r1 ,..., rN ; t) is vanishing on the bulk region,

and the correction to the conductance is expected to be of order of $�Ly .
Unfortunately we could not estimate the correction in a mathematically
rigorous sense.

5. PROOFS OF THE MAIN THEOREMS

In this section, we calculate the conductivities which are derived as the
linear response coefficients for the weak electric field. For this purpose, we
use the Rayleigh�Schro� dinger perturbation theories. Our goal is to give
proofs of our main Theorems 2.1 and 2.2. Namely we show that the con-
ductivities (conductance) so obtained satisfy the bounds in the theorems.
For the convenience of readers, in Appendices A�H we give technical
estimates and calculations of matrix elements appeared in our representa-
tion of the conductivities.

By choosing A0=meF�B as in (3.45) in Section 3.2, the N electrons
Hamiltonian H (N )

| of (2.1) which we mainly treat in this paper can be
rewritten as

H (N )
| =H (N )

|, 0+*H� (N ) (5.1)

with

H (N )
|, 0 = :

N

j=1
_ 1

2me
( px, j&eByj )

2+
1

2me
p2

y, j+V|(rj )&+U (N )(r1 ,..., rN)

(5.2)

and

H� (N )= :
N

j=1

[ px, jPbulk, j+( px, j&eByj )(1&Pbulk, j )] (5.3)

Here *=F�B is a real parameter, U (N ) is written in a sum of two-body
interactions as

U (N )(r1 ,..., rN)= :
1�i< j�N

U (2)(xi&x j , yi& yj ) (5.4)

and we have dropped the constant term.
We treat H� (N ) as a perturbation, and apply the Rayleigh�Schro� dinger

perturbation theory to the eigenvalue problem of the Hamiltonian H (N )
| of

(5.1) for getting a ``ground state'' eigenvector of H (N )
| .
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5.1. The Hall and Diagonal Conductivities

5.1.1. Nondegenerate Ground State. Consider first the case
when the ground state 8 (N )

|, 0 of the unperturbed Hamiltonian H (N )
|, 0 is non-

degenerate. Let 8� (N )
|, 0 be the corresponding normalized ground state eigen-

vector of the full Hamiltonian H (N )
| . Since the electric field F is assumed to

be sufficiently weak, the ground state eigenvector 8� (N )
|, 0 is unique. Then the

current density averaged over the random potentials 0(|) at zero tem-
perature is given by

js=&
e

LxLy
E|[(8� (N )

|, 0 , vtot, s 8� (N )
|, 0)] for s=x, y (5.5)

where the velocity operator vtot, s for the N electrons is given by

vtot, s := :
N

j=1

vx, j=N
F
B

+
1

me
:
N

j=1

( px, j&eByj ) (5.6)

and

vtot, y :=
1

me
:
N

j=1

py, j (5.7)

We rewrite the current density j=( jx , jy) as

js={&
e2

h
&F+2jx for s=x

(5.8)

2jy for s= y

with

2js := &
e

meLxLy
:
N

j=1

E|[(8� (N )
|, 0 , ?s, j8� (N )

|, 0)] (5.9)

where

?s :={ px&eBy
py

for s=x
for s= y

(5.10)

and & is the filling factor for the Landau level. Namely N=&M with the
number M=eBLxLy �h which is equal to the number of states in a single
Landau level of the non-interacting Landau Hamiltonian with no disorder.
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From the standard formula of the perturbation theory, the ground
state eigenvector 8� (N )

|, 0 of H (N )
| is expanded as

8� (N )
|, 0=8 (N )

|, 0+* :
l{0

8 (N )
|, l

(8 (N )
|, l , H� (N )8 (N )

|, 0)
E (N )

|, 0&E (N )
|, l

+O(*2) (5.11)

in powers of *. Here 8 (N )
|, l are the orthonormal eigenvectors of the unper-

turbed Hamiltonian H (N )
|, 0 with the energy eigenvalues E (N )

|, l . For the detail,
see Appendix A.1. Using this expansion (5.11), we have

:
N

j=1

(8� (N )
|, 0 , ?s, j8� (N )

|, 0)

= :
N

j=1

(8(N )
|, 0 , ?s, j8 (N )

|, 0) +2* :
l{0

:
N

j=1

_Re _(8 (N )
|, l , H� (N )8 (N )

|, 0)
E (N )

|, 0&E (N )
|, l

(8 (N )
|, 0 , ?s, j8 (N )

|, l)&+O(*2) (5.12)

where Re stands for a real part. By Lemma B.6 in Appendix B, the average
of the first sum is vanishing as

:
N

j=1

E|[(8 (N )
|, 0 , ?s, j8 (N )

|, 0)]=0 (5.13)

Substituting (5.12) and (5.13) into the right-hand side of (5.9), we have

2js=2j (1)
s +O((F�B)2) (5.14)

with

2j (1)
s :=&

2e2

h
&F Re E|[Ms] (5.15)

where

Ms :=
1

meN
:
N

j=1
�8 (N )

|, 0 , ?s, j
[1&G (N )

| ]
E (N )

|, 0&H (N )
|, 0

H� (N )8 (N )
|, 0� (5.16)

Here G (N )
| is the orthogonal projection onto the ground state 8 (N )

|, 0 . From
(5.8), (5.9), (5.14) and (5,15), the Hall and diagonal conductivities can be
written as

_xy := lim
F � 0

jx

F
=&

e2

h
&&

2e2

h
& Re E|[Mx] (5.17)
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and

_yy := lim
F � 0

jy

F
=&

2e2

h
& Re E|[My] (5.18)

respectively.

5.1.2. Degenerate ``Ground State.'' Next consider the case
when the ``ground state'' of the Hamiltonian H (N )

|, 0 is q-fold degenerate. Let
8(N )

|, (0, +) be the ``ground state'' eigenvectors with the energy eigenvalue
E (N )

|, (0, +) for +=1, 2,..., q. We take [8 (N )
|, (0, +)] to be an orthonormal system.

In this case, the current density is given by

js :=&
e

LxLy
E| _1

q
:
q

+=1

(8� (N )
|, (0, +) , vtot, s8� (N )

|, (0, +))& (5.19)

where 8� (N )
|, (0, +) are the corresponding normalized ground state eigenvectors

of the Hamiltonian H (N )
| , with the corresponding energy eigenvalues

E� (N )
|, (0, +) . Similarly to the non-degenerate case, the corrections for the

current density j are given by

2js := &
e

meLxLy
E| _1

q
:
q

+=1
�8� (N )

|, (0, +) , :
N

j=1

?s, j8� (N )
|, (0, +)�& (5.20)

The ``ground state'' eigenvectors 8� (N )
|, (0, +) are expanded as

8� (N )
|, (0, +) =8 (N, 0)

|, (0, +)+* :
l{0

8 (N)
|, l

1
E (N )

|, (0, +)&E (N )
|, l

(8 (N )
|, l , H� (N )8 (N, 0)

|, (0, +))+ } } }

(5.21)

by using the degenerate perturbation theory. Here 8 (N, 0)
|, (0, +) are orthonormal

vectors which span the sector spanned by the ``ground states'' eigenvectors
8(N )

|, (0, +) of the unperturbed Hamiltonian H (N )
|, 0 . For the detail of the degen-

erate perturbation theory, see Appendix A.2. Using this expansion, we have

�8� (N )
|, (0, +) , :

N

j=1

?s, j 8� (N )
|, (0, +)�

=�8 (N, 0)
|, (0, +) , :

N

j=1

?s, j8 (N, 0)
|, (0, +)�

+2* Re _�8 (N, 0)
|, (0, +) , :

N

j=1

?s, j
1&G (N )

|

E (N )
|, (0, +)&H (N )

|, 0

H� (N )8 (N, 0)
|, (0, +)�&

+O(*2) (5.22)
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Here G (N )
| is the orthogonal projection onto the sector of the degenerate

``ground state'' whose space is spanned by the q energy eigenvectors
8(N )

|, (0, +) , +=1, 2,..., q. Substituting (5.22) into (5.20), we obtain

2js =&
e

meLxLy
E| _1

q
:
q

+=1
�8 (N, 0)

|, (0, +) , :
N

j=1

?s, j8 (N, 0)
|, (0, +)�&&

2e*
meLxLy

_Re E| _1
q

:
q

+=1 �8 (N, 0)
|, (0, +) , :

N

j=1

?s, j
1&G (N )

|

E (N )
|, (0, +)&H (N )

|, 0

H� (N )8 (N, 0)
|, (0, +)�&

+O(*2)

=&
e

meLxLy
E| _1

q
:
q

+=1 �8 (N )
|, (0, +) , :

N

j=1

?s, j8 (N )
|, (0, +)�&&

2e*
meLxLy

_Re E| _1
q

:
q

+=1
�8 (N )

|, (0, +) , :
N

j=1

?s, j
1&G (N )

|

E (N )
|, (0, +)&H (N )

|, 0

H� (N )8 (N )
|, (0, +)�&

+O(*2) (5.23)

Since the first term in the right-hand side of the second equality is vanish-
ing owing to Lemma B.6, we obtain

2js=2j (1)
s +O(F 2) (5.24)

with

2j (1)
s :=&

2e2

h
&F Re E|[Ms] (5.25)

and

Ms :=
1

meN
1
q

:
q

+=1
�8 (N )

|, (0, +) , :
N

j=1

?s, j
1&G (N )

|

E (N )
|, (0, +)&H (N )

|, 0

H� (N )8 (N )
|, (0, +)�

(5.26)

In consequence, we have the expressions of the conductivities as

_xy := lim
F � 0

jx

F
=&

e2

h
&&

2e2

h
& Re E|[Mx] (5.27)

and

_yy := lim
F � 0

jy

F
=&

2e2

h
& Re E|[My] (5.28)
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with the above Ms . These have the same forms as (5.17) and (5.18) in the
non-degenerate case.

5.2. Estimate of E|[Ms]

From the expressions of the conductivities (5.17), (5.18), (5.27) and
(5.28), we want to estimate E[Ms], in order to prove Theorems 2.1 and 2.2.
In the following, we treat only the non-degenerate case because one can
treat the degenerate case in the same way.

We define two projection operators Pin and Pout as

Pin :=P(Iin), and Pout :=P(Iout) (5.29)

with the intervals

Iin=[&Ly �2+$, Ly �2&$], and Iout=Ibulk"Iin (5.30)

Clearly we have Pbulk=Pin+Pout from the definition (3.38) of Pbulk with
(3.39). We write Ms of (5.16) as

Ms=Ms, in+Ms, out+Ms, edge (5.31)

where

Ms, in :=
1

meN
:
N

i=1

:
N

j=1
�8 (N )

|, 0 , ?s, j
[1&G (N )

| ]
E (N )

|, 0&H (N )
|, 0

Pin, i px, i8 (N )
|, 0� (5.32)

Ms, out :=
1

meN
:
N

i=1

:
N

j=1
�8 (N )

|, 0 , ?s, j
[1&G (N )

| ]
E (N )

|, 0&H (N )
|, 0

Pout, i px, i8 (N )
|, 0� (5.33)

and

Ms, edge :=
1

meN
:
N

i=1

:
N

j=1
�8 (N )

|, 0 , ?s, j
[1&G (N )

| ]
E (N )

|, 0&H (N )
|, 0

_(1&Pbulk, i )( px, i&eByi ) 8 (N )
|, 0� (5.34)

Let us sketch the idea of the proofs of Theorems 2.1 and 2.2. Since one
can expect that the contributions of Ms, out and Ms, edge become small for a
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large volume, we explain the idea only for Ms, in . Consider the random
average of the matrix element in (5.32). It is written as

E| _�8 (N )
|, 0 , ?s, j

[1&G (N )
| ]

E (N )
|, 0&H (N )

|, 0

Pin, i px, i8 (N )
|, 0�&

=:
k

�kE| _�8 (N )
|, 0 , ?s, j

[1&G (N )
| ]

E (N )
|, 0&H (N )

|, 0

Pi (k) 8 (N )
|, 0�& (5.35)

by using the projection operator P(k) onto the Fourier component with
the wavenumber k. We introduce a transformation consisting of a reflection
and a magnetic translation as

x � &x, y � 2yk& y (5.36)

with yk=�k�(eB). In particular, y= yk is the fixed point for the second
part of the transformation. This yields that the wavenumber k also is the
fixed point in the space of the wavenumbers. Using the transformation, we
have

�kE| _�8 (N )
|, 0 , ?s, j

[1&G (N )
| ]

E (N )
|, 0&H (N )

|, 0

P i (k) 8 (N )
|, 0�&

=&�kE| _�8 (N )
|, 0 , ?s, j

[1&G (N )
| ]

E (N )
|, 0&H (N )

|, 0

Pi (k) 8 (N )
|, 0�&

+(corrections from the boundaries y=\Ly �2) (5.37)

for the summand with k in the right-hand side of (5.35). From these obser-
vations, we conclude that the contributions of E|[Ms, in] for the conduc-
tivities are small if the corrections from the boundaries give small contribu-
tions for a large volume. In fact, the corrections are small as we will show
in Appendix C.

In order to give the proofs of Theorems 2.1 and 2.2, let us summarize
the results of the estimates for E|[Ms, in], E|[Ms, out] and E|[Ms, edge].
For the details of the calculations, see the corresponding Appendices.

5.2.1. Non-interacting Case. Consider first the non-interacting
case U (2)=0. We obtain the following estimates:

|E|[Ms, in]|�Cin, 0

Ly

lB \lB

$ +
4

(5.38)
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from (C.41) in Appendix C.1,

|E|[Ms, out]|�C (1)
out, 0

Ly

lB \lB

$ +
4

+C (2)
out, 0 \lB

$ +
2

(5.39)

from (D.13) in Appendix D.1, and

|E|[Ms, edge]|�Cedge, 0

$
Ly

(5.40)

from (E.3) in Appendix E. Here Cin, 0 , C (1)
out, 0 , C(2)

out, 0 and Cedge, 0 are positive
constants which are independent of Lx , Ly . By choosing

$=lB \Ly

lB +
2�5

(5.41)

we get

|E|[Ms]|�|E|[Ms, in]|+|E|[Ms, out]|+|E|[Ms, edge]|

�C0 \ lB

Ly+
3�5

(5.42)

with a positive constant C0 . Combining this bound, (5.17) and (5.18), we
obtain

}_xy+
e2

h
& }�Ccon, 0 \ lB

Ly+
3�5

, |_yy |�Ccon, 0 \ lB

Ly+
3�5

(5.43)

where Ccon, 0 is a positive constant.

5.2.2. Interacting Case. Next consider the interacting case U (2)

{0. We take large Lx , Ly so that N�Nmin , and assume that the single-
body potential V| is two times continuously differentiable on R2, i.e., V| #
C2(R2), and satisfies the bound (2.31). Here Nmin is a positive number
given by (F.16) in Appendix F.2. Then we obtain the following estimates:

|E|[Ms, in]|�Cin \Lx

lB +
5�6

\Ly

lB +
11�6

\lB

$ +
3

(5.44)

from Proposition C.8 in Appendix C.2,

|E|[Ms, out]|�Cout \Lx

lB +
5�6

\Ly

lB +
11�6

\lB

$ +
3

(5.45)
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from Proposition D.1 in Appendix D.2, and

|E|[Ms, edge]|�Cedge

$
Ly

(5.46)

from (E.3) in Appendix E. Here Cin , Cout and Cedge are positive constants
which are independent of Lx , Ly . We choose

$=lB \Lx

lB +
5�24

\Ly

lB +
17�24

(5.47)

Then we get

|E|[Ms]|�|E|[Ms, in]|+|E|[Ms, out]|+|E|[Ms, edge]|

�C \Lx

lB +
5�24

\lB

Ly+
7�24

(5.48)

with a positive constant C. In particular, we have

|E|[Ms]|�C \lB

L +
1�12

and $=lB \ L
lB+

11�12

for Lx=Ly=L
(5.49)

Combining these bounds, (5.17) and (5.18), we obtain

}_xy+
e2

h
& }�Ccon \Lx

lB +
5�24

\ lB

Ly +
7�24

(5.50)

|_yy |�Ccon \Lx

lB +
5�24

\ lB

Ly +
7�24

and

}_xy+
e2

h
& }�Ccon \lB

L +
1�12

(5.51)

|_yy |�Ccon \lB

L +
1�12

for Lx=Ly=L

Here Ccon is a positive constant.
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APPENDIX A. THE RAYLEIGH�SCHRO� DINGER
PERTURBATION THEORIES

In this appendix, we apply the Rayleigh�Schro� dinger perturbation
theories to non-degenerate and degenerate ``ground states'' of the present
quantum Hall Hamiltonian H (N )

| of (5.1). Since there is an excitation gap
above the ``ground state(s),'' this perturbative treatment is justified mathe-
matically in the sense of an asymptotic expansion with respect to a suf-
ficiently weak electric field.13

Recall the Hamiltonian

H (N )
| =H (N )

|, 0+*H� (N ) (A.1)

where * is a sufficiently small real parameter. The Schro� dinger equation is

H (N )
| 8� (N )

| =E� (N )
| 8� (N )

| (A.2)

with an energy eigenvalue E� (N )
| . In order to obtain a ground state eigenvec-

tor 8� (N )
| and the eigenvalue E� (N )

| in powers of *, we treat the Hamiltonian
H� (N ) in (A.1) as a perturbation.

A.1. Non-degenerate Case

Consider first the case when the ground state 8 (N )
|, 0 of the unperturbed

Hamiltonian H (N )
|, 0 is non-degenerate. As usual we expand the eigenvector

8� (N )
|, 0 of the ground state of H (N )

| in powers of * as

8� (N )
|, 0=8 (N )

|, 0+* :
l{0

al 8 (N )
|, l+ } } } (A.3)

in terms of the eigenvectors 8 (N )
|, l of the unperturbed Hamiltonian H (N )

|, 0 ,
and expand the corresponding eigenvalue E� (N )

|, 0 in powers of * as

E� (N )
|, 0=E (N )

|, 0+*E (N, 1)
|, 0 + } } } (A.4)

Here E (N )
|, 0 is the energy eigenvalue for the ground state eigenvector 8 (N )

|, 0

of H (N )
|, 0 . Substituting these expansions and (A.1) into the Schro� dinger

equation (A.2), one has

[H (N )
|, 0+*H� (N )] _8 (N )

|, 0+* :
l{0

al8 (N )
|, l+ } } } &

=[E (N )
|, 0+*E (N, 1)

|, 0 + } } } ] _8 (N )
|, 0+* :

l{0

al 8 (N )
|, l+ } } } & (A.5)
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Immediately,

H (N )
|, 08 (N )

|, 0=E (N )
|, 0 8 (N )

|, 0 (A.6)

in the zero-th order of *, and

H� (N )8 (N )
|, 0+ :

l{0

al H (N )
|, 08 (N )

|, l=E (N, 1)
|, 0 8 (N )

|, 0+E (N )
|, 0 :

l{0

al8 (N )
|, l (A.7)

in the first order of *. Taking the inner product with 8 (N )
|, l (l{0) in both

sides of (A.7), one has

(8 (N )
|, l , H� (N )8 (N )

|, 0)+alE (N )
|, l=E (N )

|, 0al (A.8)

Here we have taken [8 (N )
|, l] to be the orthonormal complete system. As a

result, the coefficient al is

al=
1

E (N )
|, 0&E (N )

|, l

(8 (N )
|, l , H� (N )8 (N )

|, 0) (A.9)

Substituting this into (A.3), one has

8� (N )
|, 0=8 (N )

|, 0+* :
l{0

8 (N )
|, l

1
E (N )

|, 0&E (N )
|, l

(8 (N )
|, l , H� (N )8 (N )

|, 0) +O(*2) (A.10)

A.2. Degenerate Case

In order to treat the ``degenerate ground state,'' we first rewrite the
Hamiltonian H (N )

| of (A.1) as

H (N )
| =H (N )

|, 0+*G(N )
| H� (N )G (N )

| +*H� (N )
G (A.11)

with

H� (N )
G :=G (N )

| H� (N )(1&G (N )
| )+(1&G (N )

| ) H� (N )G (N )
|

+(1&G (N )
| ) H� (N )(1&G (N )

| ) (A.12)

where G (N )
| is the orthogonal projection onto the sector spanned by the

``ground state'' eigenvectors 8 (N )
|, (0, +) of H (N )

|, 0 . In the present case, we for-
mally treat the Hamiltonian H� (N )

G as a perturbation, although the second
term in the right-hand side of (A.11) is still a small perturbation. Let
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8(N, 0)
|, (0, +) be the q eigenvectors of the ``unperturbed'' Hamiltonian H (N )

|, 0+
*G( (N )

| H� (N )G (N )
| , and let E (N, 0)

|, (0, +) be the corresponding energy eigenvalues.
We take [8 (N, 0)

|, (0, +)] to be an orthonormal system. Clearly

E (N, 0)
|, (0, +)=E (N )

|, (0, +)+O(*) (A.13)

where E (N )
|, (0, +) are the ``ground state'' energy eigenvalues of the

Hamiltonian H (N )
|, 0 . In the same way as in the preceding Section A.1, the

``ground state'' eigenvector 8� (N )
|, (0, +) of H (N )

| is expanded as

8� (N )
|, (0, +)=8 (N, 0)

|, (0, +)+* :
l{0

al8 (N )
|, l+ } } } (A.14)

and expand the corresponding energy eigenvalue E� (N )
|, (0, +) as

E� (N )
|, (0, +)=E (N, 0)

|, (0, +)+*E (N, 0)
|, (0, +)+ } } } (A.15)

Substituting these into the Schro� dinger equation, one has

H� (N )
G 8 (N, 0)

|, (0, +)+H (N )
|, 0 :

l{0

al8 (N )
|, l

=E (N )
|, (0, +) :

l{0

al 8 (N )
|, l+E (N, 1)

|, 0 8 (N )
|, (0, +) (A.16)

where we have used (A.13). Taking the inner product with 8 (N )
|, l with l{0

in both sides, one gets

al=
1

E (N )
|, (0, +)&E (N )

|, l

(8 (N )
|, l , H� (N )8 (N, 0)

|, (0, +)) (A.17)

Substituting this into (A.14), one has

8� (N )
|, (0, +) =8 (N, 0)

|, (0, +)+* :
l{0

8 (N)
|, l

1
E (N )

|, (0, +)&E (N )
|, l

_(8 (N )
|, l , H� (N )8 (N, 0)

|, (0, +)) + } } } (A.18)

APPENDIX B. MATRIX ELEMENTS OF THE QUANTUM
HALL SYSTEMS WITH DISORDER

In this appendix, we study the properties of some matrix elements
(5.16) appeared in the expressions (5.17), (5.18) of the conductivities.
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B.1. The Single Electron Landau Hamiltonian with Disorder

Consider first the single electron Landau Hamiltonian

H|=
1

2me
[( px&eBy)2+ p2

y]+V|(x, y) (B.1)

with the periodic boundary conditions (3.9). The single-electron potential
V| with disorder satisfies the periodic boundary conditions (2.4) and the
condition (2.5) of boundedness.

Lemma B.1. Let .| be an eigenvector of the Hamiltonian H| of
(B.1). Then the translate t( y)( yk) .| is an eigenvector of the Hamiltonian
H|$ with the potential V|$ given by

V|$(x, y)=V|(x, y& yk) (B.2)

Here yk=�k�(eB) with k=2?n�Lx , (n # Z).

Proof. From the assumption H|.|=E|.| , we have

E|t( y)( yk) ,| =t( y)( yk) H| .|=t ( y)( yk) H|[t ( y)( yk)]&1 t( y)( yk) .|

=H|$ t( y)( yk) .| K (B.3)

In the same way, we have

Lemma B.2. Let .|, l be an eigenvector of the Hamiltonian H| of
(B.1) with the eigenvalue E|, l . Let .|$, l=t( y)(2y0) R.|, l , where R is the
reflection operator defined in (3.18). Then .|$, l is an eigenvector of the
Hamiltonian H|$ with the random potential V|$ given by

V|$(x, y)=V|(&x, 2y0& y) (B.4)

Here y0=�k0 �(eB) with k0=2?n0 �Lx , (n0 # Z). The corresponding eigen-
value E|$, l is equal to E|, l . Further the system [.|$, l] is an orthogonal
complete system if the original system [.|, l] of the eigenvectors is an
orthogonal complete system.

Since ?s is invariant under the magnetic translations t (x)( } } } ) and
t( y)( } } } ), one can easily obtain the following lemma:

Lemma B.3. Let V| be a random potential, and let V|$ be the
random potential given by (B.4). Let .|, l be the eigenvectors of the
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Hamiltonian H| , and let .|$, l=t( y)(2y0) R.|, l . Then the following rela-
tion is valid:

(.|, l , ?s.|, l$)=&(.|$, l , ?s.|$, l$) (B.5)

Let .|, l be an eigenvector of the Hamiltonian H| . We expand .|, l

in Fourier series as

.|, l(x, y)=L&1�2
x :

k

eikx.̂|, l(k, y) (B.6)

Since the vector .|, l satisfies the periodic boundary condition .|, l(x, y)
=ty(Ly) .|, l(x, y) we have

.̂|, l(k, y)=.̂|, l(k&K, y&Ly) (B.7)

as in (3.27) in the proof of Lemma 3.2. We define a projection operator as

P� (k) := :
l # Z

P(k+lK ) (B.8)

where P(k) is given in (3.34).

Lemma B.4. Let V| be a random potential, and let V|$ be the
translate given by

V|$(x, y)=V|(x, y& y0) (B.9)

where eBy0=�k0=2?�n0 �Lx with an integer n0 . Then

(.|$, m , P� (k) ?s .|$, n)=(.|, m , P� (k&k0) ?s .|, n) (B.10)

Here .|, n is an eigenvector of the Hamiltonian H| , and .|$, n=
t( y)( y0) .|, n which is the corresponding eigenvector of H|$ as we showed
in Lemma B.1.

Proof. Since the vector P� (k) ?s.|$, n satisfies the periodic boundary
conditions (3.9), one has

(.|$, n , P� (k) ?s .|$, n)=(.|, m , [t( y)( y0)]&1 P� (k) ?s t( y)( y0) .|, n)

=(.|, m , [t( y)( y0)]&1 P� (k) t ( y)( y0) ?s.|, n) (B.11)

Therefore it is sufficient to show

[t( y)( y0)]&1 P� (k) t( y)( y0)=P� (k&k0) (B.12)
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Let f be a function on R2 such that it has a Fourier expansion

f (x, y)=:
k$

eik$xf� (k$, y) (B.13)

Then

[t( y)( y0)]&1 P� (k) t( y)( y0) f (x, y)

=[t( y)( y0)]&1 P� (k) :
k$

ei(k$+k0) xf� (k$, y& y0)

=[t( y)( y0)]&1 :
l

ei(k+lK )f� (k&k0+lK, y& y0)

=:
l

ei(k&k0+lK )f� (k&k0+lK, y)

=P� (k&k0) f (x, y) (B.14)

B.2. The N Electrons Landau Hamiltonian with Disorder

We define the magnetic translation operators for N electrons as

T (N, x)(x$) :=}
N

j=1

t (x)
j (x$) (B.15)

and

T (N, y)( y$) :=}
N

j=1

t ( y)
j ( y$) (B.16)

Further we define the reflection operator for N electrons as

R(N ) :=}
N

j=1

Rj (B.17)

In the same way as in Section B.1, we have the following two lemmas:

Lemma B.5. Let 8 (N )
| be an eigenvector of the Hamiltonian H (N )

|, 0

of (5.2) with a random potential V| , and let E (N )
| be the corresponding

energy eigenvalue. Let V|$ be the reflection of the random potential V|

with respect to the axes x=0 and y= y0 , i.e.,

V|$(x, y)=V|(&x, 2y0& y) (B.18)
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where y0=�k0 �(eB) with k0=2?n0 �Lx , (n0 # Z). Set 8 (N )
|$ =

T (N, y)(2y0) R(N )8 (N )
| . Then 8 (N )

|$ is an eigenvector H (N )
|$, 0 with the random

potential V|$ , and the energy eigenvalue E (N )
|$ is equal to E (N )

| .

Lemma B.6. Let V| be a random potential, and let V|$ be the
reflection given by

V|$(x, y)=V|(&x, 2y0& y) (B.19)

Here y0 is the same as in Lemma B.5. Let 8 (N )
|, l be eigenvectors of the

Hamiltonian H (N )
|, 0 . Then

(8 (N )
|$, l , ?x, j 8 (N )

|$, l$)=&(8 (N )
|, l , ?x, j8 (N )

|, l$) (B.20)

where the vector 8 (N )
|$, l=T (N, y)(2y0) R(N )8 (N )

|, l which are the eigenvectors
of the Hamiltonian H (N )

|$, 0 with the random potential V|$ as we showed in
the preceding Lemma B.5.

Lemma B.7. Let V| be a random potential, and let V|$ be the
translate given by

V|$(x, y)=V|(x, y& y0) (B.21)

where eBy0=�k0=2?�n0 �Lx with an integer n0 . Then the following
equalities are valid:

(8 (N )
|$, l , ?s, j8 (N )

|$, l$) =(8 (N )
|, l , ?s, j8 (N )

|, l$) (B.22)

and

(8 (N )
|$, l , P� j (k) ?s, j8 (N )

|$, l$) =(8 (N )
|, l , P� j (k&k0) ?s, j8 (N )

|, l$) (B.23)

Here 8 (N )
|, n are the eigenvectors of the Hamiltonian H (N )

|, 0 , and 8 (N )
|$, n=

T (N, y)( y0) 8 (N )
|, n which are the eigenvectors of H (N )

|$, 0 with the random
potential V|$ .

Proof. Since ?s, j is invariant the magnetic translations, one can
easily obtain (B.22). The relation (B.23) follows from the identity (B.12) in
Lemma B.4. K
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APPENDIX C. ESTIMATE OF E|[Ms, in]

In this appendix, we estimate the random average of Ms, in of (5.32),
which is given by

E|[Ms, in]=
1

meN
:
N

i=1

:
N

j=1

E| _�8 (N )
|, 0 , ?s, j

[1&G (N )
| ]

E (N )
|, 0&H (N )

|, 0

Pin, i px, i 8 (N )
|, 0�&

(C.1)

For this purpose, we first want to get the explicit forms of the ``corrections
from the boundaries'' in (5.37).

To begin with, we note the following: Let 8(N )
| be an N electrons

eigenvector of the unperturbed Hamiltonian H (N )
|, 0 of (5.2). Clearly this

vector can be expanded as

8(N )
| = :

[lj ]

a|, [lj ]
Asym[.|, l1

�.|, l2
� } } } �.|, lN

] (C.2)

in terms of the normalized eigenvectors [.|, l] of the single electron
Hamiltonian H| of (B.1), where Asym[ } } } ] stands for the antisymmetriza-
tion of a wavefunction, i.e.,

Asym[8](r1 , r2 ,..., rN) :=
1

- N !
:
_

(&1)l(_) 8(r_(1) , r_(2) ,..., r_(N )) (C.3)

for a function 8 of (r1 , r2 ,..., rN). Here the sum runs over all the permuta-
tions _ of (1, 2,..., N ), and l(_) is the number of binary permutations in the
permutation _.

Lemma C.1. The following relation is valid:

E| _�8 (N )
|, 0 , ?s, j

1&G (N )
|

E (N )
|, 0&H (N )

|, 0

Pin, i px, i8 (N )
|, 0�&

=2E| _�8 (N )
|, 0 , ?s, j

1&G (N )
|

E (N )
|, 0&H (N )

|, 0

P (+)
in, i px, i8 (N )

|, 0�& (C.4)

where

P(+)
in = :

k # F(I in
(+))

P(k) (C.5)

with the interval I (+)
in =(0, Ly �2&$].
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Proof. Let V| be a random potential, and let V|$ be the reflection of
V| with respect to the x and y axes, i.e.,

V|$(x, y)=V|(&x, &y) (C.6)

Let .|, n and .|$, n are the normalized eigenvectors of the single electron
Hamiltonian H| of (B.1) with the random potentials V| and V|$ , respec-
tively. From Lemma B.2, we can take .|$, n=R.|, n . By using the Fourier
expansion (B.6) for .|, n , we have

.|$, n(x, y)=RL&1�2
x :

k

eikx.̂|, n(k, y)

=L&1�2
x :

k

e&ikx.̂|, n(k, &y)

=L&1�2
x :

k

eikx.̂|, n(&k, &y) (C.7)

This implies

.̂|$, n(k, y)=.̂|, n(&k, &y) (C.8)

Thereby we have

(.|$, m , P(k) .|$, n)=(.|, m , P(&k) .|, n) (C.9)

Let 8 (N )
|, n be an eigenvector of the Hamiltonian H (N)

|, 0 with the random
potential V| , and let 8 (N )

|$, n be an eigenvector of the Hamiltonian H (N )
|$, 0

with the random potential V|$ of (C.6). From Lemma B.5, we can take
8(N )

|$, n=R(N )8 (N )
|, n . Combining this with the expansion (C.2) for the vector

8(N )
|, n , we have

8(N )
|$, n= :

[lj ]

a (n)
|, [lj ] Asym[.|$, l1

�.|$, l2
� } } } � |$, lN

] (C.10)

with .|$, l=R.|, l . Using this expression, one can easily obtain

(8 (N )
|$, m , P i (k) 8 (N )

|$, n)

= :
[lj ], [l$j ]

a (m)*
|, [lj ] a (n)

|, [l$j ]

_(Asym[.|$, l1
� } } } �.|$, lN

], Pi (k) Asym[.|$, l$1
� } } } �.|$, l$N

])
(C.11)
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The matrix elements in the right-hand side are written as

(Asym[.|$, l1
�.|$, l2

� } } } �.|$, lN
],

Pi (k) Asym[.|$, l$1
�.|$, l$2

� } } } �.|$, l$N
])

=
1
N {

:
l # [l1 ,..., lN ]

(.|$, l , P(k) .|$, l) if lj=l$j for all j=1, 2,..., N

\(.|$, lj
, P(k) .|$, l$m

) if [lk]N
k=1"[lj ]=[l$k]N

k=1"[l$m]
and lj{l$m

0, otherwise (C.12)

Combining (C.9), (C.11) and (C.12), we obtain

(8 (N )
|$, m , Pi (&k) 8 (N )

|$, n) =(8 (N )
|, m , Pi (k) 8 (N )

|, n) (C.13)

From this and (B.20) in Lemma B.6, we obtain the desired result (C.4). K

Lemma C.2. Let V| be a random potential, and let V|$ be the
reflection given by

V|$(x, y)=V|(&x, 2yk& y) (C.14)

with yk>0. Let .|, n be the normalized eigenvectors of the single electron
Hamiltonian H| of (B.1) with the potential V| , and let .|$, n=
t( y)(2yk) R.|, n which are the eigenvectors of H|$ with V|$ from Lem-
ma B.2. Then the following relation is valid:

(.|$, l , P(k) .|$, l$)=(.|, l , P(k) .|, l$)+(.|, l , /~ kP(k&K ) .|, l$)

&(.|, l , /~ kP(k) .|, l$) (C.15)

where K=Ly �l2
B , and

/~ k( y) :={1, if y # [&Ly �2, &Ly �2+2yk]
0, otherwise

(C.16)

Proof. By using the Fourier expansion (B.6) for .|, n , we have

.|$, n(x, y)=t( y)(2yk) L&1�2
x :

k$

e&ik$x.̂|, n(k$, &y)

=L&1�2
x :

k$

ei(2k&k$) x.̂|, n(k$, 2yk& y)

=L&1�2
x :

k"

eik"x.̂|, n(2k&k", 2yk& y) (C.17)
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Thereby we get

(.|$, l , P(k) .|$, l$)=|
Ly �2

&Ly�2
dy[.̂|, l(k, 2yk& y)]* .̂|, l$(k, 2yk& y)

(C.18)

Further we can rewrite the right-hand side as

(.|$, l , P(k) .|$, l$)

=|
Ly�2+2yk

&Ly�2+2yk

dy~ [.̂|, l(k, y~ )]* .̂|, l$(k, y~ )

=(.|, l , P(k) .|, l$)+|
Ly�2+2yk

Ly�2
dy~ [.̂|, l(k, y~ )]* .̂|, l$(k, y~ )

&|
&Ly�2+2yk

&Ly�2
dy~ [.̂|, l(k, y~ )]* .̂|, l$(k, y~ )

=(.|, l , P(k) .|, l$)+|
&Ly�2+2yk

&Ly�2
dy~ [.̂|, l(k&K, y~ )]* .̂|, l$(k&K, y~ )

&|
&Ly�2+2yk

&Ly�2
dy~ [.̂|, l(k, y~ )]* .̂|, l$(k, y~ )

=(.|, l , P(k) .|, l$)+(.|, l , /~ k P(k&K ) .|, l$)

&(.|, l , /~ kP(k) .|, l$) (C.19)

Here we have used (B.7) for getting the third equality. K

Lemma C.3. Let V| be a random potential, and let V|$ be the
reflection given by

V|$(x, y)=V|(&x, 2yk& y) (C.20)

Here yk is the same as in the preceding Lemma C.2. Let 8 (N )
|, n be the

eigenvectors of the Hamiltonian H (N )
|, 0 with the random potential V| ,

and let 8 (N )
|$, n=T (N, y)(2yk) R(N )8 (N )

|, n which are the eigenvectors of the
Hamiltonian H (N )

|$, 0 with the random potential V|$ of (C.20), as we showed
in Lemma B.5. Then the following relation is valid:

(8 (N )
|$, n , Pi (k) 8 (N )

|$, 0) =(8 (N )
|, n , Pi (k) 8 (N )

|, 0) +(8 (N )
|, n , /~ k, iPi(k&K ) 8 (N )

|, 0)

&(8 (N )
|, n , /~ k, i Pi (k) 8 (N )

|, 0) (C.21)

424 Koma



Proof. In the same way as in the proof of Lemma C.1, we have the
expressions (C.11) and (C.12) also for the random potential V|$ of (C.20).
Combining these with (C.15), we obtain the desired result (C.21). K

Using the above result (C.21) and Lemma B.6, we have

(8 (N )
|$, 0 , ?s, j8 (N )

|$, l)
1

E (N )
|$, 0&E (N )

|$, l

(8 (N )
|$, l , P (+)

in, i px, i8 (N )
|$, 0)

= :
k # F(I in

(+))

�k(8 (N )
|$, 0 , ?s, j8 (N )

|$, l)
1

E (N )
|$, 0&E (N )

|$, l

(8 (N )
|$, l , Pi (k) 8 (N )

|$, 0)

=& :
k # F(I in

(+))

�k(8 (N )
|, 0 , ?s, j 8 (N )

|, l)
1

E (N )
|, 0&E (N )

|, l

_[(8 (N )
|, l , Pi (k) 8 (N )

|, 0) +(8 (N )
|, l , /~ k, iPi (k&K ) 8 (N )

|, 0)

&(8 (N )
|, l , /~ k, iPi (k) 8(N )

|, 0)] (C.22)

for l{0. Taking the random average in both sides, we get

2E| _ :
k # F(I in

(+))

�k(8 (N )
|, 0 , ?s, j8 (N )

|, l)
1

E (N )
|, 0&E (N )

|, l

(8 (N )
|, l , Pi (k) 8 (N )

|, 0)&
=E| _ :

k # F(I in
(+))

�k(8 (N )
|, 0 , ?s, j 8 (N )

|, l)
1

E (N )
|, 0&E (N )

|, l

_(8 (N )
|, l , /~ k, iPi (k&K ) 8 (N )

|, 0)&
&E| _ :

k # F(I in
(+))

�k(8 (N )
|, 0 , ?s, j 8 (N )

|, l)
1

E (N )
|, 0&E (N )

|, l

_(8 (N )
|, l , /~ k, iPi (k) 8 (N )

|, 0)& (C.23)

for l{0. From (C.1), (C.4) and (C.23), we have

E|[Ms, in]

=
1

meN
:
N

i=1

:
N

j=1

E| _�8 (N )
|, 0 , ?s, j

[1&G (N )
| ]

E (N )
|, 0&H (N )

|, 0

Pin, i px, i8 (N )
|, 0�&

=
1

meN
:
N

i=1

:
N

j=1

E| _�8 (N )
|, 0 , ?s, j

[1&G (N )
| ]

E (N )
|, 0&H (N )

|, 0

Q� (+)
in, i ( px, i+�K ) 8 (N )

|, 0�&
&

1
meN

:
N

i=1

:
N

j=1

E| _�8 (N )
|, 0 , ?s, j

[1&G (N )
| ]

E (N )
|, 0&H (N )

|, 0

Q(+)
in, i px, i8(N )

|, 0�& (C.24)

425Quantized Hall Conductance



where

Q (+)
in := :

k # F(I in
(+))

P(k) /~ k (C.25)

and

Q� (+)
in := :

k # F(I in
(+))

P(k&K ) /~ k (C.26)

Now we estimate E|[Ms, in] by using the expression (C.24).

C.1. Non-interacting Case

Consider first the non-interacting case, i.e., U (2)=0. Then E|[Ms, in]
of (C.24) can be written as

E|[Ms, in]=
1

meN
:

n�N

E| _\.|, n , ?s
P>

E|, n&H|
Q� (+)

in ( px+�K ) .|, n+&
&

1
meN

:
n�N

E| _\.|, n , ?s
P>

E|, n&H|
Q (+)

in px.|, n+& (C.27)

in terms of the eigenvectors .|, n of the single electron Hamiltonian H| of
(B.1), with the energy eigenvalues E|, n , n=1, 2,.... Here we have taken
order E|, m�E|, n for m<n, and P> is the projection onto the subspace
spanned by all states above the Fermi level, i.e., all the vectors .|, n with
n>N. Without loss of generality, we can assume V|�0. Then we have
E|, n�0 for all indices n.

Let us estimate the matrix elements in the second sum in the right-
hand side of (C.27). Using the Schwarz inequality we have

} \.|, n , ?s
P>

E|, n&H|
Q (+)

in px.|, n+ }
�

eBLy

2
- (� (s)

|, n , Q (+)
in � (s)

|, n)(.|, n , Q (+)
in .|, n) (C.28)

where

� (s)
|, n :=

P>

E|, n&H|
?s.|, n (C.29)

426 Koma



Lemma C.4.

(.|, n , Q (+)
in .|, n)�C1 \lB

$ +
4

for n�N (C.30)

with the positive constant

C1 :=\ 2
�|c+

2

(E0, >+&V| &)(E0, >+&V|&+4�|c) (C.31)

Here E0, > :=minm>N[E|, m].

Proof. Note that

:
k # F(I in

(+))
|

&Ly�2+2yk

&Ly�2
dy( y& yk)4 |.̂|, n(k, y)|2

� :
k # F(I in

(+))
|

&Ly�2+2yk

&Ly�2
dy \Ly

2
& yk+

4

|.̂|, n(k, y)|2

�$4 :
k # F(I in

(+))
|

&Ly�2+2yk

&Ly�2
dy |.̂|, n(k, y)|2

=$4(.|, n , Q (+)
in .|, n) (C.32)

Combining this with the bound (F.1) in Appendix F.1, we get (C.30). K

A similar bound for (�(s)
|, n , Q (+)

in � (s)
|, n) in (C.28) can be obtained as

follows: In the same way as in the proof of Lemma C.4, we have

$4(� (s)
|, n , Q (+)

in � (s)
|, n)� :

k # F(I in
(+))

|
&Ly2�+2yk

&Ly�2
dy( y& yk)4 |�� (s)

|, n(k, y)|2

�l4
B \ 2

�|c+
2

[(&H| � (s)
|, n&+&V|& &� (s)

|, n &)2

+4�|c[(� (s)
|, n , H|� (s)

|, n)+&V|& &� (s)
|, n &2]] (C.33)
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Note that

H|

H|&E|, n
P> =

H|&E|, n+E|, n

H|&E|, n
P>

=\1+
E|, n

H|&E|, n+ P>

� min
m>N \1+

E|, n

E|, m&E|, n + P>

=
E0, >

E0, >&E|, n
P>�

E0, >

2E
P> (C.34)

for the indices n�N. Here 2E is the lower bound for the energy gap given
in (2.26). Clearly 2E�minn�N[E0, >&E|, n] which we have used for
getting the last inequality in (C.34). Using the bound (C.34), we have

&H| � (s)
|, n&2�\E0, >

2E +
2

(.|, n , ?2
s .|, n)�2meE|, n \E0, >

2E +
2

(C.35)

Similarly we obtain

(� (s)
|, n , H|� (s)

|, n)�
2meE|, nE0, >

(2E )2 (C.36)

and

&� (s)
|, n&2�

2meE|, n

(2E )2 (C.37)

Substituting these bounds into (C.33), we have

Lemma C.5.

(� (s)
|, n , Q (+)

in � (s)
|, n)�C1

2meE|, n

(2E )2 \lB

$ +
4

for n�N (C.38)
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From the bound (C.28) and Lemmas C.4 and C.5, we have

Lemma C.6.

} \.|, n , ?s
P>

E|, n&H|
Q (+)

in px.|, n+ }
�

me - �|cE0, >

- 2 2E
C1

Ly

lB \lB

$ +
4

for n�N (C.39)

In the same way, we have the following lemma:

Lemma C.7.

} \.|, n , ?s
P>

E|, n&H|
Q� (+)

in ( px+�K ) .|, n+ }
�

me - �|cE0, >

- 2 2E
C1

Ly

lB \lB

$ +
4

for n�N (C.40)

Combining these Lemmas with (C.27), we obtain

|E|[Ms, in]|�
- 2�|cE0, >

2E
C1

Ly

lB \lB

$ +
4

(C.41)

C.2. Interacting Case

Next we estimate E|[Ms, in] of (C.24) in the interacting case U (2){0.
As a result we obtain the following proposition:

Proposition C.8. Suppose that V| # C2(R2) and V| satisfies the
bound (2.31) in Theorem 2.2. Then

|E|[Ms, in]|�Cin \Lx

lB +
5�6

\Ly

lB +
11�6

\lB

$ +
3

for N�Nmin (C.42)

where Nmin is a positive number which is independent of the linear dimen-
sions Lx , Ly of the system, and Cin is a positive constant which is independent
of the linear dimensions Lx , Ly of the system.

The number Nmin is given explicitly in (F.16) in Appendix F.2. In the
rest of this appendix, we assume V| # C2(R2).
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Let A be a symmetric operator. Then one formally has

(8 (N )
|, 0 , A[1&G (N )

| ] A8 (N )
|, 0) =(A8 (N )

|, 0 , [1&G (N )
| ] A8 (N )

|, 0)

��A8 (N )
|, 0 ,

H (N )
|, 0&E (N )

|, 0

2E
A8 (N )

|, 0�
=

1
22E

(8 (N )
|, 0 , [A, [H (N )

|, 0 , A]] 8 (N )
|, 0)

(C.43)

for the ground state 8 (N )
|, 0 of the Hamiltonian H (N )

|, 0 of (5.2). Using the
techniques developed in refs. 27, 28 with this bound, we obtain the follow-
ing lemma:

Lemma C.9. The following bound is valid:

�8 (N )
|, 0 , :

N

i=1

?s, i[1&G (N )
| ] :

N

j=1

?s, j8 (N )
|, 0��me�|cC2N (C.44)

with the positive constant

C2 :=
1

22E _�|c+l2
B " �2

�x2 V|"& (C.45)

Proof. We treat only the case with s=x because the other can be
treated in the same way. Note that

_ :
N

i=1

?x, i , _H (N )
|, 0 , :

N

j=1

?x, j&&
= :

N

i=1
{_?x, i , _

p2
y, i

2me
, ?x, i&&+[?x, i , [V|(ri ), ?x, i]]=

+:
i, j

[?x, i , [U (N )(r1 , r2 ,..., rN), ?x, j]]

=
N(�eB)2

me
+ :

N

i=1

�2 �2

�x2
i

V|(ri ) (C.46)

where we have used the identity [U (N )(r1 , r2 ,..., rN), �j ?x, y]=0 which is
due to the assumption that the potential U (N ) is a function of only the
relative coordinates rij=(x i&x j , yi& yj ). Combining this with (C.43), we
have the desired bound
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�8 (N )
|, 0 , :

N

i=1

?x, i[1&G (N )
| ] :

N

j=1

?x, j 8 (N )
|, 0�

�
N

22E _(�eB)2

me
+�2 �8 (N )

|, 0 ,
�2

�x2
i

V|(ri ) 8 (N )
|, 0�&

�
N

22E _(�eB)2

me
+�2 " �2

�x2 V|"& K (C.47)

We write

9 (N, s)
| =

[1&G (N )
| ]

E (N )
|, 0&H (N )

|, 0

:
N

j=1

?s, j8 (N )
|, 0 (C.48)

Lemma C.10. The following bound is valid:

(9 (N, s)
| , ?2

x, j9
(N, s)
| )�

2m2
e �|c

2E
C2 \1+

NE�
2E+ (C.49)

where E� is a positive constant which is independent of the linear dimen-
sions Lx , Ly of the system, and the constant C2 is given by (C.45).

Proof. Using an identity

H (N )
|, 0

E (N )
|, 0&H (N )

|, 0

[1&G (N )
| ]=\&1+

E (N )
|, 0

E (N )
|, 0&H (N )

|, 0+ [1&G (N )
| ] (C.50)

we have

1
2me

(9 (N, s)
| , ?2

x, j9
(N, s)
| )

�
1
N

(9 (N, s)
| , H (N )

|, 09 (N, s)
| )

�
1
N �8 (N )

|, 0 , :
N

i=1

?s, i
[1&G (N )

| ]
H (N )

|, 0&E (N )
|, 0

:
N

j=1

?s, j8 (N )
|, 0�

+
E (N )

|, 0

N �8 (N )
|, 0 :

N

i=1

, ?s, i _ 1&G (N )
|

E (N )
|, 0&H (N )

|, 0&
2

:
N

j=1

?s, j 8 (N )
|, 0�

�
1

N 2E \1+
E (N )

|, 0

2E + �8 (N )
|, 0 , :

N

i=1

?s, i[1&G (N )
| ] :

N

j=1

?s, j8 (N )
|, 0� (C.51)
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Combining this, the bound (C.44) of Lemma C.9 and Lemma G.1 in
Appendix G, we obtain the desired bound (C.49). K

Proof of Proposition C.8. In terms of the vector 9 (N, s)
| of (C.48),

E|[Ms, in] can be written as

E|[Ms, in]=
1

meN
:
N

i=1

E|[(9 (N, s)
| , Q� (+)

in, i ( px, i+�K ) 8 (N )
|, 0)]

&
1

meN
:
N

i=1

E|[(9 (N, s)
| , Q (+)

in, i px, i8 (N )
|, 0)] (C.52)

Using the Schwarz inequality, we have

|(9 (N, s)
| , Q (+)

in, i px, i8 (N )
|, 0) |

�
eBLy

2
- (9 (N, s)

| , Q (+)
in, i 9 (N, s)

| )(8 (N )
|, 0 , Q (+)

in, i 8 (N )
|, 0) (C.53)

In the same way as in the proof of Lemma C.4, we obtain

(9 (N, s)
| , Q (+)

in, i 9 (N, s)
| )�

2me

2E
C2 \1+

NE�
2E+\

lB

$ +
2

(C.54)

and

(8 (N )
|, 0 , Q (+)

in, i 8 (N )
|, 0)�(C3 N 2�3+C4) \lB

$ +
4

(C.55)

where we have used the bound (C.49) and Proposition F.2. Substituting
these bounds into (C.53), we get

|(9 (N, s)
| , Q (+)

in, i px, i 8 (N )
|, 0) |

�me ��|c

22E \1+
NE�
2E+ C2(C3+C4N &2�3) N 1�3 \Ly

lB +\
lB

$ +
3

(C.56)

Similarly we have

|(9 (N, s)
| , Q� (+)

in, i ( px, i+�K ) 8 (N )
|, 0) |

�me ��|c

22E \1+
NE�
2E+ C2(C3+C4N &2�3) N 1�3 \Ly

lB +\
lB

$ +
3

(C.57)
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Using these bounds for (C.52), we obtain

|E|[Ms, in]|�C$inN 5�6 Ly

lB \lB

$ +
3

(C.58)

with the constant

C$in=�2�|c

2E \ 1
N

+
E�

2E+ C2(C3+C4 N &2�3) (C.59)

Consequently we obtain the desired bound (C.42) from N=&M with
M=Lx LyeB�h. K

APPENDIX D. ESTIMATE OF E|[Ms, out]

In this appendix we estimate Ms, out of (5.33). It can be divided into
two parts as

Ms, out=M (1)
s, out+M (2)

s, out (D.1)

with

M (1)
s, out=

1
meN

:
N

i=1

:
N

j=1
�8 (N )

|, 0 , ?s, j
[1&G (N )

| ]
E (N )

|, 0&H (N )
|, 0

Pout, i?x, i8 (N )
|, 0� (D.2)

and

M (2)
s, out=

eB
meN

:
N

i=1

:
N

j=1
�8(N )

|, 0 , ?s, j
[1&G (N )

| ]
E (N )

|, 0&H (N )
|, 0

Pout, i yi8 (N )
|, 0� (D.3)

D.1. Non-interacting Case

Consider first the non-interacting case, U (2)=0. Then M (1)
s, out and

M (2)
s, out can be written as

M (1)
s, out =

1
meN

:
n�N \.|, n , ?s

P>

E|, n&H|
Pout ?x .|, n+

=
1

meN
:

n�N

(� (s)
|, n , Pout?x.|, n) (D.4)

and

M (2)
s, out=

eB
meN

:
n�N

(� (s)
|, n , Pout y.|, n) (D.5)
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in terms of the eigenvectors .|, n of the single-electron Hamiltonian H| .
Here the vector �(s)

|, n is given by (C.29).
Since we have

:
k # F(Iout)

|
Ly�2

&Ly�2
dy( y& yk)4 |.̂|, n(k, h)| 2

�$4 :
k # F(Iout)

|
Ly�2

&Ly �2
dy |.̂|, n(k, y)|2

=$4(.|, n , Pout .|, n) (D.6)

we obtain

(.|, n , Pout .|, n)�C1 \lB

$ +
4

for n�N (D.7)

in the same way as in the proof of Lemma C.4. Further we get

(� (s)
|, n , Pout �(s)

|, n)�
2me E|, n

(2E )2 C1 \lB

$ +
4

for n�N (D.8)

Using the Schwarz inequality and the bound (D.8), we have

1
me

|(� (s)
|, n , Pout ?x.|, n)|�

1
me

- (� (s)
|, n , Pout� (s)

|, n) &?x.&

�
2E|, n

2E
- C1 \lB

$ +
2

(D.9)

Therefore we obtain

|M (1)
s, out |�

2E0, >

2E
- C1 \lB

$ +
2

(D.10)

for M (1)
s, out of (D.4).

On the other hand we have

eB
me

|(� (s)
|, n , Pout y.|, n)|�

eBLy

2me
- (�(s)

|, n , Pout � (s)
|, n)(.|, nPout.|, n)

�
- �|cE0, >

- 2 2E
C1

Ly

lB \lB

$ +
4

(D.11)
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by using the Schwarz inequality, (D.7) and (D.8). Therefore we obtain

|M (2)
s, out |�

- �|cE0, >

- 2 2E
C1

Ly

lB \lB

$ +
4

(D.12)

for M (2)
s, out of (D.5).

Consequently we get

|Ms, out |�|M (1)
s, out |+|M (2)

s, out |

�
2E0, >

2E
- C1 \lB

$ +
2

+
- �|cE0, >

- 2 2E
C1

Ly

lB \lB

$ +
4

(D.13)

D.2. Interacting Case

In this case we have the following estimate for E|[Ms, out]:

Proposition D.1. Suppose that V| # C2(R2) and V| satisfies the
bound (2.31) in Theorem 2.2. Then

|E|[Ms, out]|�Cout \Lx

lB +
5�6

\Ly

lB +
11�6

\lB

$ +
3

for N�Nmin (D.14)

where Cout and Nmin are positive constants which are independent of the
linear dimensions Lx , Ly of the system. The number Nmin is given explicitly
by (F.16) in Appendix F.2.

Proof. In terms of the vector 9 (N, s)
| of (C.48), we write M (1)

s, out of
(D.2) as

M (1)
s, out=

1
meN

:
N

i=1

(9 (N, s)
| , Pout, i ?x, i8 (N )

|, 0) (D.15)

Using the Schwarz inequality, we evaluate the matrix element in the right-
hand side as

|(9 (N, s)
| , Pout, i?x, i8 (N )

|, 0) |

�- (9 (N, s)
| , Pout, i9 (N, s)

| )(8 (N )
|, 0Pout, i?2

x, i8
(N )
|, 0) (D.16)

In the same way as in Section C.2, we have

(9 (N, s)
| , Pout, i9 (N, s)

| )�
2me

2E
C2 \1+

NE�
2E+\

lB

$ +
2

(D.17)
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and

(8 (N )
|, 0Pout, i?2

x, i8
(N )
|, 0)��eB(C3N 2�3+C4) \lB

$ +
2

(D.18)

From these three bounds, we estimate M (1)
s, out of (D.15) as

|M (1)
s, out |��2�|c

2E \ 1
N

+
E�

2E+ C2(C3+C4N &2�3)_N 5�6 \lB

$ +
2

(D.19)

Similarly we can write M (2)
s, out of (D.3) as

M (2)
s, out=

eB
meN

:
N

i=1

(9 (N, s)
| , Pout, i yi8 (N )

|, 0) (D.20)

in terms of the vector 9 (N, s)
| of (C.48). Using the Schwarz inequality, we

evaluate the matrix element in the right-hand side as

|(9 (N, s)
| , Pout, i yi8 (N )

|, 0) |

�
Ly

2
- (9 (N, s)

| , Pout, i 9 (N, s)
| )(8 (N )

|, 0 , Pout, i8 (N )
|, 0)

�
me

eB ��|c

22E \ 1
N

+
E�

2E+ C2(C3+C4N &2�3)_N 5�6 Ly

lB \lB

$ +
3

(D.21)

where we have used the bound (D.17) and the bound

(8 (N )
|, 0 , Pout, i8 (N )

|, 0)�(C3 N 2�3+C4) \lB

$ +
4

(D.22)

The second bound can be derived in the same way as in Section C.2.
Substituting (D.21) into (D.20), we get

|M (2)
s, out |���|c

22E \ 1
N

+
E�

2E+ C2(C3+C4N &2�3)_N 5�6 Ly

lB \lB

$ +
3

(D.23)

Combining this with (D.19), we obtain

|Ms, out |�|M (1)
s, out |+|M (2)

s, out |

��2�|c

2E \ 1
N

+
E�

2E+ C2(C3+C4N &2�3) \1+
Ly

2$+ N 5�6 \lB

$ +
2

(D.24)
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Consequently we have the desired bound (D.14) with N=&M and M=
LxLyeB�h. K

APPENDIX E. ESTIMATE OF E|[Ms, edge]

In this appendix, we estimate the random average E|[Ms, edge] of
(5.34) which is the contribution near the edges of the system. It can be
written as

Ms, edge =
1

meN
:
N

i=1

:
N

j=1

:
l{0

(8 (N )
|, 0 , ?s, j8 (N )

|, l)

_
1

E (N )
|, 0&E (N )

|, l

(8 (N )
|, l , Pi (Iedge) ?x, i 8 (N )

|, 0) (E.1)

where

Iedge= .
l # Z

(Ly �2&$+lLy , Ly �2+$+lLy) (E.2)

As a result, we will obtain

|E|[Ms, edge]|�Cedge

$
Ly

(E.3)

where Cedge is a positive constant which is independent of the linear dimen-
sions Lx , Ly of the system in both non-interacting and interacting cases.

From Lemma B.7, we have

E| _(8 (N )
|, 0 , ?s, j8 (N )

|, l)
1

E (N )
|, 0&E (N )

|, l

(8 (N )
|, l , P� i (k) ?x, i8 (N )

|, 0)&
=

1
M

E| _(8 (N )
|, 0 , ?s, j8 (N )

|, l)
1

E (N )
|, 0&E (N )

|, l

(8 (N )
|, l , ?x, i8 (N )

|, 0)& (E.4)

for l{0, where M=eBLxLy�h. Combining this with (E.1), we obtain

|E|[Ms, edge]|

�
2$

meLyN } :
N

i=1

:
N

j=1

E| _�8 (N )
|, 0 , ?s, j

[1&G (N )
| ]

E (N )
|, 0&H (N )

|, 0

?x, i8 (N )
|, 0�& } (E.5)
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E.1. Non-interacting Case

Consider first the non-interacting case, U (2)=0. Then (E.5) can be
evaluated as

|E|[Ms, edge]|�
2$

meLyN } :
n�N

E| _\.|, n , ?s
P>

E|, n&H|
?x.|, n+& }

�
2$

meLyN
:

n�N

E| _ 1
2E

- (.|, n , ?2
s .|, n)(.|, n , ?2

x.|, n)&
�

4E0, >

2E
$

Ly
(E.6)

where we have used the Schwarz inequality.

E.2. Interacting Case

Using the Schwarz inequality and Lemma C.9, we have

} :
N

i=1

:
N

j=1
�8 (N )

|, 0 , ?s, j
[1&G (N )

| ]
E (N )

|, 0&H (N )
|, 0

?x, i8 (N )
|, 0�}

�
1

2E��8 (N )
|, 0 , :

N

i=1

?s, i[1&G (N )
| ] :

N

j=1

?s, j8 (N )
|, 0�

_�8 (N )
|, 0 , :

N

m=1

?x, m[1&G (N )
| ] :

N

n=1

?x, n8 (N )
|, 0�

�
Nme�|c

2E
C2 (E.7)

Substituting this into the right-hand side of (E.5), we obtain

|E|[Ms, edge]|�
2�|c

2E
$

Ly
C2 (E.8)

APPENDIX F. DECAY ESTIMATE OF WAVEFUNCTIONS

In this appendix, we obtain a decay estimate for the Fourier compo-
nent of a wavefunction for both non-interacting and interacting electrons
gases.
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F.1. Non-interacting Case

The aim of this subsection is to give a proof of the following proposi-
tion in the non-interacting case U (2)=0:

Proposition F.1. Let . be a wavefunction such that &H| .&<�.
Then

|(., [?x �(eB)]4 .)|

�l4
B \ 2

�|c+
2

[(&H|.&+&V|& &.&)2+4�|c[(., H|.)+&V| & &.&2]]
(F.1)

In order to see the physical meaning, we write

.(x, y)=L&1�2
x :

k

eikx.̂(k, y) (F.2)

in terms of the Fourier transform. Clearly one has

:
k
|

Ly�2

&Ly �2
dy( y& yk)4 |.̂(k, y)|2

�l4
B \ 2

�|c+
2

[(&H|.&+&V|& &.&)2+4�|c[(., H|.)+&V| & &.&2]]
(F.3)

with yk=�k�(eB). This implies that .̂(k, y) decays more rapidly than
| y& yk | &4 when &H| .&<�.

Before giving the proof of Proposition F.1, we shall see a fairly trivial
decay estimate for a wavefunction. Let . be a wavefunction. Then we
formally have

1
2me

(., ( px&eBy)2 .)+
1

2me
(., p2

y.)+(., V|.)=(., H| .) (F.4)

Clearly we get

1
2me

(., ( px&eBy)2 .)�(., H| .)+&V| & &.&2 (F.5)

and

1
2me

(., p2
y.)�(., H|.)+&V| & &.&2 (F.6)
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Combining the first inequality with the Fourier form (F.2), we get

:
k
|

Ly�2

&Ly �2
dy( y& yk)2 |.̂(k, y)|2�

2me

e2B2 [(., H| .)+&V|& &.&2] (F.7)

where yk=�k�(eB). This implies that the Fourier component .̂(k, y)
decays more rapidly than the inverse square of the distance | y& yk | when
the wavefunction satisfies the condition |(., H| .)|<�.

In order to obtain the stronger decay bound (F.3), we consider a
formal identity,

(., H|[ y& px �(eB)]2 .)

=
e2B2

2me
(., [ y& px �(eB)]4 .)+

1
2me

(., p2
y[ y& px�(eB)]2 .)

+(., V|[ y& px �(eB)]2 .) (F.8)

Since the second term in the right-hand side can be written as

1
2me

(., p2
y[ y& px �(eB)]2 .)

=
1

2me
(., py[ y& px�(eB)]2 py.)&

i�
me

(., py[ y& px �(eB)] .)

(F.9)

we have

e2B2

2me
(., [ y& px�(eB)]4 .)+

1
2me

(., py[ y& px �(eB)]2 py.)

=(., H|[ y& px �(eB)]2 .)+
i�
me

(., py[ y& px�(eB)] .)

&(., V|[ y& px �(eB)]2 .) (F.10)

In order to get a bound for the first term in the left-hand side, we estimate
the right-hand side as follows. The first term in the right-hand side of
(F.10) can be evaluated as

|(., H|[ y& px �(eB)]2 .)|�&H|.& - (., [ y& px �(eB)]4 .) (F.11)

by using the Schwartz inequality. Similarly the second term in the right-
hand side of (F.10) can be evaluated as
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} �

me
(., py[ y& px �(eB)] .) }� �

me
&py .& - (., [ y& px �(eB)]2 .)

�
2�

eB
[(., H|.)+&V|& &.&2] (F.12)

where we have used (F.5), and (F.6). Finally we have

|(., V|[ y& px�(eB)]2 .)|�&V|& &.& - (., [ y& px �(eB)]4 .) (F.13)

for the third term in the right-hand side of (F.10). From these three
bounds, we formally obtain

e2B2

2me
(., [ y& px �(eB)]4 .)

�(&H|.&+&V| & &.&) - (., [ y& px �(eB)]4 .)

+
2�

eB
[(., H| .)+&V|& &.&2] (F.14)

where we have used the fact that the second term in the left-hand side of
(F.10) is non-negative. From this (F.14), one can easily obtain

- (., [ y& px �(eB)]4 .)

�
me

e2B2 (&H|.&+&V|& &.&)

+
me

e2B2 - (&H|.&+&V|& &.&)2+4�|c[(., H| .)+&V|& &.&2]

�
2me

e2B2 - (&H|.&+&V|& &.&)2+4�|c[(., H|.)+&V|& &.&2]

(F.15)

Thus we have obtained the desired bound (F.1) which is justified for .
satisfying &H| .&<�.

F.2. Interacting Case

Next we consider the interacting case. Our goal of this subsection is to
give a proof of Proposition F.2 below which is an extension of the decay
bound (F.1) to the interacting electrons gas. We write

Nmin=_ 2&
�|c

(E� +&V|&)&
3�2

(F.16)
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where E� is an upper bound for the ground state energy per electron E (N )
|, 0 �N

of the Hamiltonian H (N )
|, 0 of (5.2). The constant E� is independent of the

linear dimensions Lx , Ly of the system as we show in Lemma G.1 in
Appendix G.

Proposition F.2. Let 8 (N )
|, 0 be the ground state eigenvector of the

Hamiltonian H (N )
|, 0 with norm one. Then

\ 1
eB+

4

(?2
x, j8

(N )
|, 0 , ?2

x, j8
(N )
|, 0)

�l4
B(C3N 2�3+C4) for N�Nmin (F.17)

where the constants C3 and C4 are independent of the linear dimensions Lx ,
Ly of the system.

Consider an identity

E (N )
|, 0(?2

x, j8
(N )
|, 0 , 8 (N )

|, 0)

=(?2
x, j8

(N)
|, 0 , H (N)

|, 08 (N)
|, 0)

=(?2
x, j 8

(N )
|, 0 , H (N, j)

|, 0 8 (N )
|, 0) +(?x, j8 (N )

|, 0 , (H (N )
|, 0&H (N, j)

|, 0 ) ?x, j8 (N )
|, 0)

(F.18)

where

H (N, j)
|, 0 :=

1
2me

(?2
x, j+ p2

y, j)+V|(rj )+U (N, j) (F.19)

with

U (N, j)(rj ; r1 , r2 ,..., rj&1 , r j+1 ,..., rN)= :
l{ j

U (2)(xj&xl , y j& yl) (F.20)

Clearly the first term in the right-hand side of (F.18) is written as

(?2
x, j8

(N )
|, 0 , H (N, j)

|, 0 8 (N )
|, 0)

=
1

2me
(?2

x, j 8
(N )
|, 0 , ?2

x, j8
(N )
|, 0) +

1
2me

(8 (N )
|, 0 , ?2

x, j p2
y, j 8

(N )
|, 0)

+(?2
x, j8

(N )
|, 0 , V|(rj ) 8 (N )

|, 0) +(8 (N )
|, 0 , ?2

x, jU
(N, j)8 (N )

|, 0) (F.21)

Note that

?2
x, j p2

y, j=?x, j p2
y, j?x, j&�2e2B2&i�eB(?x, j py, j+ py, j ?x, j ) (F.22)
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and

?2
x, j U

(N, j)=?x, jU (N, j)?x, j&
i�
2 \?x, j

�
�xj

U (N, j)+
�

�x j
U (N, j)?x, j+

&
�2

2
�2

�x2
j

U (N, j) (F.23)

Here we have used the commutation relation [ py, j , ?x, j]=i�eB for getting
the first relation. Since the left-hand side of (F.21) is real from (F.18), we
have

(?2
x, j8

(N )
|, 0 , H (N, j)

|, 0 8 (N )
|, 0) �

1
2me

(?2
x, j8

(N )
|, 0 , ?2

x, j8
(N )
|, 0)&

�2e2B2

2me

&
�2

2 �8 (N )
|, 0 ,

�2

�x2
j

U (N, j)8 (N )
|, 0�

&&V| & - (?2
x, j 8

(N )
|, 0 , ?2

x, j 8
(N )
|, 0) (F.24)

Here we have used the Schwarz inequality for evaluating the third term in
the right-hand side of (F.21). Substituting this bound (F.24) into (F.18), we
obtain

(E (N )
|, 0&E (N&1)

|, 0 (?2
x, j8

(N )
|, 0 , 8 (N )

|, 0)

�
1

2me
(?2

x, j8
(N )
|, 0 , ?2

x, j8
(N )
|, 0) &

�2e2B2

2me

&
�2

2 �8 (N )
|, 0 ,

�2

�x2
j

U (N, j)8 (N )
|, 0�

&&V|& - (?2
x, j8

(N )
|, 0 , ?2

x, j 8
(N )
|, 0)

�
1

2me
(?2

x, j8
(N )
|, 0 , ?2

x, j8
(N )
|, 0) &

�2e2B2

2me
&

�2:
N

(8 (N )
|, 0 , U (N )8 (N )

|, 0)

&&V|& - (?2
x, j8

(N )
|, 0 , ?2

x, j 8
(N )
|, 0) (F.25)

where we have used the assumption (2.11) about U (2) and

(?x, j 8 (N )
|, 0 , (H (N )

|, 0&H (N, j)
|, 0 ) ?x, j 8 (N )

|, 0)

�E (N&1)
|, 0 (?x, j8 (N )

|, 0 , ?x, j8 (N )
|, 0) (F.26)
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Further the inequality thus obtained is rewritten as

(?2
x, j 8

(N )
|, 0 , ?2

x, j 8
(N )
|, 0) &2me &V|& - (?2

x, j 8
(N )
|, 0 , ?2

x, j8
(N )
|, 0)

��2e2B2+2me�2:U+max[0, E (N )
|, 0&E (N&1)

|, 0 ]_
4m2

e E (N )
|, 0

N

��2e2B2+2me�2:U+max[0, E (N )
|, 0&E (N&1)

|, 0 ]_4m2
e E� (F.27)

by using Lemma G.1 in Appendix G. The energy difference E (N )
|, 0&E (N&1)

|, 0

is evaluated as follows:

Lemma F.3. Let n be an integer such that

n+ 1
2�N 2�3

min (F.28)

Then

E (N )
|, 0&E (N&1)

|, 0 ��|c \n+
1
2++2C$5

N

- 2n+1
+C$6 (F.29)

where C$5 and C$6 are positive constant which are independent of the linear
dimensions Lx , Ly of the system and of the number N of the electrons.

The proof is given in Appendix H.

Proof of Proposition F.2. From (F.27), we have

(?2
x, j8

(N )
|, 0 , ?2

x, j 8
(N )
|, 0)

�4m2
e &V| &2+4�2e2B2+8me�2:U+max[0, E (N )

|, 0&E (N&1)
|, 0 ]_16m2

e E�
(F.30)

From the bound (F.29), we have

E (N )
|, 0&E (N&1)

|, 0 ��|c(C5 N 2�3+C6) (F.31)

by choosing n as

N 2�3+1�n+ 1
2>N 2�3�N 2�3

min (F.32)

Substituting (F.31) into the above (F.30), we obtain the desired bound
(F.17) in Proposition F.2. K

444 Koma



APPENDIX G. ESTIMATES OF THE GROUND STATE ENERGY
E (N )

|, 0 AND THE GROUND STATE
EXPECTATION OF U (N )

The aim of this appendix is to estimate the ground state energy E (N )
|, 0

of the Hamiltonian H (N )
|, 0 of (5.2) and the expectation value of U (N ) with

respect to the ground state 8 (N )
|, 0 . The results are summarized as follows:

Lemma G.1. Let 8 (N )
|, 0 be the ground state eigenvector of the

Hamiltonian H (N )
|, 0 with the energy eigenvalue E (N )

|, 0 . Then the following
two bounds are valid:

E (N )
|, 0

N
�

(&+1)2

2&
�|c+&V|&+

eB(&+1)
h

[&U (2)&1+=1(&)]�E� (G.1)

and

1
N

(8 (N )
|, 0 , U (N )8 (N )

|, 0)�2 &V|&+
eB(&+1)

h
[&U (2)&1+=1(&)]�U (G.2)

Here E� and U are positive constants which are independent of the linear
dimensions Lx , Ly of the system, and =1(&) is a small real number which
tends to zero as Lx , Ly � +�. The norm & } } } &1 is defined as

& f &1 :=|
S

| f (x, y)| dx dy (G.3)

for a function f on S.

We begin with the following lemma:

Lemma G.2. The following two bounds are valid:

E (N )
|, 0�N

(&+1)2

2&
�|c+N &V|&+(8 (N )

0 , U (N )8 (N )
0 ) (G.4)

and

(8 (N )
|, 0 , U (N )8 (N )

|, 0)�2N &V|&+(8 (N )
0 , U (N )8 (N )

0 ) (G.5)
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where the vector 8 (N )
0 is the N electrons ground state eigenvector of the

non-interacting Hamiltonian

:
N

j=1

Hj= :
N

j=1

1
2me

[( px, j&eByj )
2+ p2

y, j] (G.6)

with the periodic boundary conditions.

Proof. By definition, we have

E (N )
|, 0 =(8 (N )

|, 0 , H (N )
|, 08 (N )

|, 0)

�(8 (N )
0 , H (N )

|, 08 (N )
0 )

� :
N

j=1

(8 (N )
0 , Hj8 (N )

0 )+N &V|&+(8 (N )
0 , U (N )8 (N )

0 ) (G.7)

Therefore the first bound (G.4) follows from

:
N

j=1

(8 (N )
0 , Hj8 (N )

0 )=:
l
\nl+

1
2+ �|c�M

(&+1)2

2
�|c (G.8)

where the second sum runs over all the states l in the Fermi sea. Further,
by combining (G.7) with

:
N

j=1

(8(N )
0 , Hj8 (N )

0 )� :
N

j=1

(8 (N )
|, 0 , Hj8 (N )

|, 0) (G.9)

we get the second bound (G.5). K

Owing to this lemma, it is sufficient to estimate the expectation
(8 (N )

0 , U (N )8 (N )
0 ). For this purpose, we use the following lemma:

Lemma G.3. Let ,P
n, k be the eigenvectors (3.17) of the single elec-

tron Hamiltonian H of (3.1) with the periodic boundary conditions (3.9).
Then

:
k
|

S
dxi dyi U (2)(xi&x j , yi& yi ) |,P

n, k(x i , yi )|2=
eB
h

[&U (2)&1+= (n)
1 ]

(G.10)

for any (xj , yj ) # R2. Here the sum is over all the wavenumbers k for a fixed
Landau index n, and the small real number = (n)

1 tends to zero uniformly in
the Landau index n as Lx , Ly � +�.
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Proof. Consider the function

\n(x, y) :=:
k

|,P
n, k(x, y)| 2 (G.11)

From the definition (3.17) of the vector ,P
n, k , the function \n is periodic in

both x and y directions as

\n(x, y)=\n(x+2x, y)=\n(x, y+2y) (G.12)

where

2x=
h

eB
1

Ly
and 2y=

h
eB

1
Lx

(G.13)

From this periodicity and the periodicity (2.10) of the two-body interaction
U (2), we can assume |xj |�2x�2, | yj |�2y�2. The integral of \n on the unit
cell 2l, m becomes

|
2l, m

dx dy \n(x, y)=
1
M

(G.14)

where

2l, m :=[xl , xl+1]_[ ym , ym+1] (G.15)

with

xl=&
Lx

2
+(l&1) 2x for l=1, 2,..., M (G.16)

and

ym=&
Ly

2
+(m&1) 2y for m=1, 2,..., M (G.17)

Since the function U (2) is continuous by the assumption, there exists a
point (!l, m, 'l, m) # 2l, m such that

|
2l, m

dxi dy i U (2)(xi&xj , yi& yj ) \n(xi , yi )

=U (2)(!l, m&xj , 'l, m& yj ) |
2l, m

dxi dyi \n(x i , yi )

=
U (2)(!l, m&xj , 'l, m& yj )

M
(G.18)
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Using (G.18) and the definitions of 2x, 2y, we get

:
k
|

S
dxi dyi U (2)(xi&xj , yi& yj ) |,P

n, k(xi , yi )|2

=|
S

dx i dyi U (2)(xi&xj , y i& yj ) \n(xi , yi )

=
eB
h

:
l, m

U (2)(!l, m&xj , 'l, m& yj ) 2x 2y

=
eB
h

:
- (!l, m)2+('l, m)2�R$

U (2)(!l, m&xj , 'l, m& y j ) 2x 2y

+
eB
h

:
- (!l, m)2+('l, m)2>R$

U (2)(!l, m&xj , 'l, m& y j ) 2x 2y (G.19)

with a large positive number R$. Since U (2) is continuous, the first term in
the last line converges to

eB
h |

- (xi)
2+( yi)

2�R$
dxi dyi U (2)(xi&xj , yi& yj ) (G.20)

as Lx , Ly � +�. The second term is vanishing uniformly in n, Lx , Ly as
R$ � +� from the assumption (2.12) about U (2). Thus the statement of
the lemma is proved. K

Proof of Lemma G.1. Note that

(8 (N )
0 , U (N )8 (N )

0 )

= 1
2 :

m, k, n, k$
| dxi dyi | dxj dyj[,P

m, k(ri )]* [,P
n, k$(rj )]*

_U (2)(rij ) ,P
m, k(ri ) ,P

n, k$(rj )

& 1
2 :

m, k, n, k$
| dxi dyi | dxj dyj[,P

m, k(ri )]* [,P
n, k$(rj )]*

_U (2)(rij ) ,P
n, k$(ri ) ,P

m, k(rj )

� :
m, k, n, k$

| dx i dyi | dxj dy j U (2)(rij ) |,P
m, k(ri )|2 |,P

n, k$(rj )|2 (G.21)

where we have written rij=(xi&xj , yi& y j ) for simplicity.
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On the other hand we have

:
m, k

| dxi dy i U (2)(rij ) |,P
m, k(ri )|2�

eB(&+1)
h

[&U (2)&1+=1(&)] (G.22)

from Lemma G.3. Here =1(&) is a small real number which tends to zero as
Lx , Ly � +�. Substituting this inequality into the right-hand side of
(G.21), we get

(8 (N )
0 , U (N )8 (N )

0 )�N {eB(&+1)
h

[&U (2)&1+=1(&)]= (G.23)

Combining this with Lemma G.2, we obtain the bounds in Lemma G.1. K

APPENDIX H. ESTIMATE OF E (N )
|, 0&E (N&1)

|, 0

In this appendix, we prove Lemma F.3. For this purpose we consider

E (N )
|, 0�

'(H (N )
|, 0)

'(1)
(H.1)

where

'( } } } )=
1
M

:
k

(8 (N )
|, (n, k) , ( } } } ) 8 (N )

|, (n, k)) (H.2)

with

8(N )
|, (n, j)=Asym[8 (N&1)

|, 0 �,P
n, k] (H.3)

Here Asym[ } } } ] is the antisymmetrization of a wavefunction, whose
definition is given in (C.3), 8 (N&1)

|, 0 is the N&1 electrons ground state
eigenvector of the Hamiltonian H (N&1)

|, 0 with norm one, and ,P
n, k are the

normalized eigenvectors (3.17) of the single electron Hamiltonian H of
(3.1) with the periodic boundary conditions (3.9). We introduce an
orthogonal decomposition of the vector as 8 (N&1)

|, 0 as

8 (N&1)
|, 0 =9 (N&1)

1, (n, k)+9 (N&1)
2, (n, k) (H.4)

with

8 (N&1)
1, (n, k)= `

N&1

j=1

[1&P (n, k)
j ] 8 (N&1)

|, 0 (H.5)

449Quantized Hall Conductance



where P(n, k) is the orthogonal projection onto the vector ,P
n, k . Then

Asym[9 (N&1)
2, (n, k) �,P

n, k] is identically zero because the vector 8 (N&1)
|, 0 is

expanded as

8 (N&1)
|, 0 = :

[!j ]

a[!j ]
Asym[,P

!1
�,P

!2
� } } } �,P

!N&1
] (H.6)

in terms of the vectors [,P
n, k]. Here we denote by ! the pair of a Landau

index n and a wavenumber k, i.e., !j=(nj , k j ). From this observation, we
have

'(1)=
1
M

:
k

(8 (N )
|, (n, k) , 8 (N )

|, (n, k))

=
1
M

:
k

(Asym[8 (N&1)
|, 0 �,P

n, k], Asym[8 (N&1)
|, 0 �,P

n, k])

=
1
M

:
k

(Asym[9 (N&1)
1, (n, k)�,P

n, k], Asym[9 (N&1)
1, (n, k) �,P

n, k])

=
1
M

:
k

&9 (N&1)
1, (n, k)&

2=1&
1
M

:
k

&9 (N&1)
2, (n, k)&

2 (H.7)

Lemma H.1. The following bound is valid:

1
M

:
k

&9 (N&1)
2, (n, k)&

2�
N 2�3

min

2n+1
(H.8)

with the positive constant Nmin is given by (F.16).

Proof. By definition, we have

&9 (N&1)
2(n, k) &2= :

[!j ]

|a[!j ]
|2 :

!$ # [!1 , !2 ,..., !N&1]

(,!$ , P(n, k),!$) (H.9)

Clearly,

1
M

:
k

&9 (N&1)
2, (n, k)&

2=
1
M

:
[!j ]

|a[!j ]
|2 :

!$ # [!1 , !2 ,..., !N&1]

(,!$ , P(n),!$) (H.10)

where P(n)=�k P(n, k), i.e., the orthogonal projection onto the Landau level
with the index n.
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On the other hand we have, for the ground state energy E (N&1)
|, 0 ,

E (N&1)
|, 0

N&1
=

1
N&1

(8 (N&1)
|, 0 , H (N&1)

|, 0 8 (N&1)
|, 0 )

=
1

N&1
:

N&1

j=1

(8 (N&1)
|, 0 , Hj8 (N&1)

|, 0 )

+
1

N&1
:

N&1

j=1

(8 (N&1)
|, 0 , V|(rj ) 8 (N&1)

|, 0 )

+
1

N&1
(8 (N&1)

|, 0 , U (N&1)8 (N&1)
|, 0 )

�
1

N&1
:

N&1

j=1

(8 (N&1)
|, 0 , P (n)

j Hj 8 (N&1)
|, 0 ) &&V|&

=
1

N&1
�|c \n+

1
2+ :

N&1

j=1

(8 (N&1)
|, 0 , P (n)

j 8 (N&1)
|, 0 ) &&V|&

=
1

N&1
�|c \n+

1
2+ :

[!j ]

|a[!j ]
|2

_ :
!$ # [!1 , !2 ,..., !N&1]

(,!$ , P(n),!$)&&V|& (H.11)

Combining this with the above (H.10), we get

1
M

:
k

&9 (N&1)
2, (n, k)&2�

&
�|c \&V| &+

E (N&1)
|, 0

N&1 +
1

n+1�2
(H.12)

Using the bound (G.1) in Lemma G.1 in the preceding appendix and Nmin

of (F.16), we obtain the desired bound (H.8). K

From (H.7) and (H.8), we have

Corollary H.2.

'(1)� 1
2 for n+ 1

2�N 2�3
min (H.13)

Next consider the numerator of the right-hand side of (H.1),

'(H (N )
|, 0)=

1
M

:
k

(8 (N )
|, (n, k) , H (N )

|, 0 8 (N )
|, (n, k)) (H.14)
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By definition, we have

(8 (N )
|, (n, k) , H (N )

|, 08 (N )
|, (n, k))

=(Asym[8(N&1)
|, 0 �,P

n, k], H (N )
|, 0 Asym[8 (N&1)

|, 0 �,P
n, k])

=(Asym[8(N&1)
|, 0 �,P

n, k], Asym[H (N )
|, 0 8(N&1)

|, 0 �,P
n, k])

=E (N&1)
|, 0 &8 (N )

|, (n, k) &
2+�|c (n+ 1

2) &8 (N )
|, (n, k)&

2

+(Asym[8 (N&1)
|, 0 �,P

n, k], Asym[8 (N&1)
|, 0 �V| ,P

n, k])

+(Asym[8 (N&1)
|, 0 �,P

n, k], Asym[U (N, } } } )8 (N&1)
|, 0 �,P

n, k]) (H.15)

where the operator U (N, } } } ) is defined as

(U (N, j)8 (N&1)
|, 0 �,P

n, k)(r1 , r2 ,..., rj&1 , rj+1 ,..., rN , rj )

= :
i{ j

U (2)(xi&xj , yi& yj )

_8 (N&1)
|, 0 (r1 , r2 ,..., rj&1 , rj+1 ,..., rN) ,P

n, k(rj ) (H.16)

Substituting this into the right-hand side of (H.14), we obtain

'(H (N )
|, 0)=_E (N&1)

|, 0 +�|c \n+
1
2+& '(1)

+
1
M

:
k

(Asym[8 (N&1)
|, 0 �,P

n, k], Asym[8 (N&1)
|, 0 �V|,P

n, k])

+
1
M

:
k

(Asym[8 (N&1)
|, 0 �,P

n, k], Asym[U (N, } } } )8 (N&1)
|, 0 �,P

n, k])
(H.17)

The first sum in the right-hand side is written as

1
M

:
k

(Asym[8 (N&1)
|, 0 �,P

n, k], Asym[8 (N&1)
|, 0 �V|,P

n, k])

=
1
M

:
k

(Asym[9 (N&1)
1, (n, k)�,P

n, k], Asym[9 (N&1)
3, (n, k) �V|,P

n, k]) (H.18)

where

9 (N&1)
3, (n, k)= `

N&1

j=1

[1&P (n, k)
j (V|)] 8 (N&1)

|, 0 (H.19)
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Here P(n, k)(V|) is the orthogonal projection onto the vector V|,P
n, k . Using

the Schwarz inequality, we have

} 1
M

:
k

(Asym[8 (N&1)
|, 0 �,P

n, k], Asym[8 (N&1)
|, 0 �V|,P

n, k]) }
�

1
M

:
k

&9 (N&1)
1, (n, k)& &9 (N&1)

3, (n, k)& &V|,P
n, k &

�
1
M

:
k

&8 (N&1)
|, 0 &2 &V| &=&V| & (H.20)

The second sum in the right-hand side of (H.17) is written as

1
M

:
k

(Asym[8 (N&1)
|, 0 �,P

n, k], Asym[U (N, } } } )8 (N&1)
|, 0 �,P

n, k])

=
1
M

:
k

(Asym[9 (N&1)
1, (n, k)�,P

n, k], Asym[U (N, } } } )9 (N&1)
1, (n, k) �,P

n, k])

+
1
M

:
k

(Asym[9 (N&1)
1, (n, k) �,P

n, k], Asym[U (N, } } } )9 (N&1)
2, (n, k)�,P

n, k])
(H.21)

by using the decomposition (H.4). This second sum in the right-hand side
is evaluated as follows:

Lemma H.3. The following bound is valid:

} 1
M

:
k

(Asym[9 (N&1)
1, (n, k) �,P

n, k], Asym[U (N, } } } )9 (N&1)
2, (n, k) �,P

n, k]) }
�N 1�3

min - (=2+:�?) &U (2)&1 &U (2)&�_
N&1

- 2n+1
(H.22)

where : is the positive constant given in the assumption (2.11) on the inter-
action U (2), and =2 is a positive number which tends to zero as Lx ,
Ly � +�. The norm & } } } &� is given by

& f &� := sup
(x, y) # S

| f (x, y)| (H.23)

for a continuous function f on S.
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Proof. The interaction potential U (2) is written as

U (2)(xj&xl , y j& yl)

=
1

- Lx Ly

:
kx , ky

U� (2)(kx , ky) eikxxj+iky ye&ikx xl&iky yl (H.24)

in terms of the Fourier transform of U� (2). Clearly,

U (N, j)(rj ; r1 ,..., rj&1 , rj+1 ,..., rN)

= :
l{ j

U (2)(xj&xl , yj& yl)

=
1

- Lx Lx

:
kx , ky

U� (2)(kx , ky) eikx xj+iky yj :
l{ j

e&ikx xl&iky yl (H.25)

Using this expression, we have

1
M

:
k

(Asym[9 (N&1)
1, (n, k) �,P

n, k], Asym[U (N, } } } )9 (N&1)
2, (n, k) �,P

n, k])

=
1
M

:
kx , ky , k

U� (2)(kx , ky)

- LxLy

_(Asym[9 (N&1)
1, (n, k) �,P

n, k], Asym[9� (N&1)
2, (n, k)(kx , ky)�,� P

n, k(kx , ky)])
(H.26)

where

9� (N&1)
2, (n, k)(kx , ky)

={ `
l{ j

[1&P� (n, k)
l (kxky)]= :

l{ j

e&ikxxl&iky yl9 (N&1)
2, (n, k) (H.27)

and

,� P
n, k(kx , ky)=eikxx+iky y,P

n, k (H.28)

Here P� (n, k)(kx , ky) is the projection onto the vector ,� P
n, k(kx , ky). Applying

the Schwarz inequality to the right-hand side of (H.26), we have
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} 1
M

:
k

(Asym[9 (N&1)
1, (n, k)�,P

n, k], Asym[U (N, } } } )9 (N&1)
2, (n, k)�,P

n, k]) }
2

�_ :
kx , ky

(k2
x+k2

y+:)2 |U� (2)(kx , ky)|2 1
M

:
k

&9 (N&1)
1, (n, k) &2&

__ 1
LxLy

:
kx , ky

1
(k2

x+k2
y+:)2

1
M

:
k

&9� (N&1)
2, (n, k)(kx , ky)&2&

�4: &U (2)&2 &U (2)&�_\ 1
4?:$

+=$2+ (N&1)2 1
M

:
k

&9 (N&1)
2, (n, k)&

2

(H.29)

where we have used the following three bounds:

&9� (N&1)
2, (n, k)(kx , ky)&2�(N&1)2 &9 (N&1)

2, (n, k)&
2 (H.30)

:
kx , ky

(k2
x+k2

y+:)2 |U� (2)(kx , ky)|2=| dxj dyj } \ �2

�x2
j

+
�2

�y2
j

+:+ U (2)(rjl) }
2

�4:2 | dxj dyj |U (2)(rjl)|2

�4:2 &U (2)&1 &U (2)&� (H.31)

and

1
LxLy

:
kx , ky

1
(k2

x+k2
y+:)2=

1
4?:

+=$2 (H.32)

Clearly =$2 defined by the above equation is a real number which tends to
zero as Lx , Ly � +�. The bound (H.31) is easily derived from the
assumption (2.11) about U (2). Combining (H.29) with (H.8), we get the
desired bound (H.22). K

The first sum in the right-hand side of (H.21) is evaluated as follows:

Lemma H.4. The following bound is valid:

} 1
M

:
k

(Asym[9 (N&1)
1, (n, k) �,P

n, k], Asym[U (N, } } } )9 (N&1)
1, (n, k)�,P

n, k]) }
�

4&eB
h

[&U (2)&1+= (n)
1 ]+4N 2�3

min &U (2)&�
N&1
2n+1

(H.33)

where = (n)
1 is a positive number which tends to zero as Lx , Ly � �.
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Proof. Note that

1
M

:
k

(Asym[9 (N&1)
1, (n, k)�,P

n, k], Asym[U (N, } } } )9 (N&1)
1, (n, k) �,P

n, k])

=
N&1

M
:
k
| dv(N ) |9 (N&1)

1, (n, k)(r1 ,..., rN&1)| 2

_U (2)(xN&1&xN , yN&1& yN) |,P
n, k(rN)|2

&
N&1

M
:
k

| dv(N )[9 (N&1)
1, (n, k)(r1 ,..., rN&2 , rN)]* [,P

n, k(rN&1)]*

_U (2)(xN&1&xN , yN&1& yN)

_9 (N&1)
1, (n, k)(r1 ,..., rN&2 , rN&1) ,P

n, k(rN) (H.34)

Here dv(N )=dx1 dy1 dx2 dy2 } } } dxN dyN . Since the absolute value of the
second term in the right-hand side of (H.34) is bounded by the first term
by using the Schwarz inequality, we have an inequality

} 1
M

:
k

(Asym[9 (N&1)
1, (n, k) �,P

n, k], Asym[U (N, } } } )9 (N&1)
1, (n, k)�,P

n, k]) }
�

2(N&1)
M

:
k
| dv(N ) |9 (N&1)

1, (n, k)(r1 ,..., rN&1)|2

_U (2)(xN&1&xN , yN&1& yN) |,P
n, k(rN)|2 (H.35)

Note that

|9 (N&1)
1, (n, k)(r1 ,..., rN&1)| 2

�2[|8 (N&1)
|, 0 (r1 ,..., rN&1)|2+|9 (N&1)

2, (n, k)(r1 ,..., rN&1)|2] (H.36)

which is easily obtained by using the decomposition 8 (N&1)
|, 0 =9 (N&1)

1, (n, k)+
9 (N&1)

2, (n, k) . Substituting this inequality into the right-hand side of (H.35), we
get

} 1
M

:
k

(Asym[9 (N&1)
1, (n, k)�,P

n, k], Asym[U (N, } } } )9 (N&1)
1, (n, k) �,P

n, k]) }
�

4(N&1)
M

:
k
| dv(N ) |8 (N&1)

|, 0 (r1 ,..., rN&1)|2

_U (2)(xN&1&xN , yN&1& yN) |,P
n, k(rN)| 2
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+
4(N&1)

M
:
k
| dv(N ) |9 (N&1)

2(n, k) (r1 ,..., rN&1)|2

_U (2)(xN&1&xN , yN&1& yN) |,P
n, k(rN)| 2

�
4(N&1)

M
:
k
| dv(N ) |8 (N&1)

|, 0 (r1 ,..., rN&1)|2

_U (2)(xN&1&xN , yN&1& yN) |,P
n, k(rN)| 2

+4(N&1) &U (2)&�
1
M

&9 (N&1)
2(n, k) &2 (H.37)

Combining this with (H.8) and Lemma G.3, we obtain the desired result
(H.33). K

Proof of Lemma F.3. Combining (H.21), (H.22), (H.33), we have

} 1
M

:
k

(Asym[8 (N&1)
|, 0 �,P

n, k], Asym[U (N, } } } )8 (N&1)
|, 0 �,P

n, k]) }
�N 1�3

min _- (=2+:�?) &U (2)&1 &U (2)&� +
4N 1�3

min &U (2)&�

- 2n+1 & N&1

- 2n+1

+
4&eB

h
[&U (2)&1+= (n)

1 ] (H.38)

Combining this, (H.17) and (H.20), we obtain

'(H (N )
|, 0)�_E (N&1)

|, 0 +�|c \n+
1
2+& '(1)+&V| &

+
4&eB

h
[&U (2)&1+= (n)

1 ]+C$5
N&1

- 2n&1
(H.39)

where C$5 is a positive constant. Substituting this into the right-hand of
(H.1), we get

E (N )
|, 0&E (N&1)

|, 0 ��|c \n+
1
2++2 &V|&

+
8&eB

h
[&U (2)&1+= (n)

1 ]+2C$5
N&1

- 2n+1
(H.40)

for n+1�2�N 2�3
min , where we have used (H.13). K
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